
On plan recognition and parsing

John Maraist
SIFT, LLC∗

jmaraist@sift.info

Christopher W. Geib
University of Edinburgh†

cgeib@inf.ed.ac.uk

Robert P. Goldman
SIFT, LLC

rpgoldman@sift.info

Probabilistic plan recognition systems based on weighted
model counting all work roughly the same way: first they
compute the exclusive and exhaustive set of models that ex-
plain a given set of observations; next they assign a proba-
bility to each model; finally they compute the likelihood of a
particular goal by summing the probability of the explanatory
models1 in which that goal occurs. In this paper we discuss
an optimization for the model-building first step: rather than
retain the full tree-like structure of goals which have been par-
tially observed, we can keep only the frontier of as-yet unob-
served actions and unachieved subgoals. The system Yappr
which we present here uses techniques familiar from pars-
ing algorithms. We give an informal introduction to Yappr
in Section 1, a more formal presentation in Section 2, and an
analysis of Yappr’s complexity in Section 3. In Section 4 we
present experimental result showing the improvement real-
ized from this technique, and then conclude with discussions
of the algorithm’s limitations, and future work.

1 Introduction
The starting point for our work is Geib and Goldman’s sys-
tem PHATT [2003; 2009]. PHATT models contain collec-
tions of partially expanded hierarchical plans [Ghallab et al.,
2004] for specific goals that account for the observed ac-
tions. PHATT builds these plans incrementally, from left to
right, by adjoining leftmost, depth-first plan tree fragments to
the existing plans. To extend an existing plan these leftmost
trees are attached at the plan’s frontier, in the position of un-
achieved subgoals at trees’ leaves. There may be multiple
ways to incorporate a single observation into an explanatory
model: different ways of incorporating the observation yield
multiple trees that could be adjoined into the model. In such
cases, PHATT makes multiple copies of the original model,
and each tree is inserted into its own copy of the plan structure
expanding the set of explanations.

Here we make two observations about PHATT’s opera-
tional behavior. First, this approach to plan recognition is

∗Smart Information Flow Technologies, 211 North First Street,
Suite 300, Minneapolis, MN 55401-1480.

†School of Informatics, 10 Crichton Street, Edinburgh, EH8
9AB, Scotland.

1Since models in these systems explain the observations in terms
of plans that are being executed, we will use the terms model, expla-
nation, explanatory model, and hypothesis interchangeably.

reminiscent of recursive descent parsing algorithms [Steed-
man, 2000]: PHATT builds its trees in the same way a parser
might label a tree root with the grammar’s starting symbol,
expand the tree with nodes corresponding to further nonter-
minals, finally producing a parse tree with nonterminals la-
belling branches and terminals labelling leaves. However,
traditional parsing methods alone cannot address plan recog-
nition. The most pressing reason for this is our commitment
to allowing for the execution and recognition of multiple,
concurrent, interleaved plans. Standard parsing algorithms
like CKY [Younger, 1967] are designed for a single sentence
at a time and usually assume that they will observe a com-
plete sentence. Human language speakers do not interleave
multiple sentences in the same way they interleave execution
of plans. People regularly engage in such multitasking; our
plan recognition algorithms should be capable of recognizing
these situations and their component plans. Of course it is
not surprising that existing parsing algorithms make such as-
sumptions, but their reliance on these assumptions does make
them inappropriate for our task.

The second observation about PHATT’s operational behav-
ior is that during explanation construction, the part of the
plan’s tree structure above the frontier is not used; only the
frontier is required. Any approach which copies that structure
will incur significant computational costs. It is the frontier (in
combination with observed actions) that determines the new
trees which can be added to the model; all additions to the ex-
planation’s structure are made at the frontier. Moreover, with
a straightforward transformation of the plan library we will
not need the tree structures even to extract the plan’s root-
level goals. Since all interactions with the explanation take
place at the frontier, we can dispense with the tree structure,
maintain only the tree frontier, and avoid unnecessarily creat-
ing and copying interior tree structure in the model’s plans.

We will show that the frontier of the trees in an explana-
tory model can be represented as a string of nonterminals and
ordering constraints from a grammar that defines the original
plan library to be recognized. By careful precomputation, we
can build a plan grammar that explicitly models only the fron-
tiers and ordering constraints of the leftmost depth-first trees
from the original plan library. We will then show how to use
the new grammar to build explanatory models that maintain
just the frontiers of the plans in the model. This will allow
us to build and maintain equivalent but significantly smaller

model structures.
Intuitively, the approach we will argue for with Yappr has

three high level steps:

1. Offline, precompile the plan library into a plan frontier
fragment grammar (PFFG).

2. Use the resulting PFFG to build explanations for the ob-
served actions. This process will look very much like a
string rewriting or graph editing process.

3. Maintain the PFFG productions and the order in which
they are used in building each of the explanations. This
information will allow us to build more complete expla-
nations in the case of queries for information beyond the
root goals being followed.

Strictly speaking, this approach corresponds to goal recogni-
tion rather than plan recognition [Blaylock, 2005]: the lat-
ter calculates the complete plan structure being followed by
the agent, as opposed to identifying only the top-level goals.
We see Yappr as a middle road: the root goals being pursued
are the most common probabilistic query for such systems.
Therefore, we argue for an algorithm that builds restricted
models that allow us to quickly answer this question while
still allowing the system to reconstruct complete plan models
if a probabilistic query is made about details not available in
our restricted models.

2 The Yappr system
2.1 Plan libraries
The foundation of any plan recognition system is a collection
of plans to be recognized. These plans must be specified in a
formal language.

Definition 1 We define a plan library as a tuple 〈Σ,NT,R, P〉
where, Σ is a finite set of basic actions or terminal symbols,
NT is a finite set of methods or nonterminal symbols, R ⊆
NT is a distinguished set of intendable or root nonterminal
symbols, and P is a set of production rules of the form A →
α : φ where:
• A ∈ NT.
• α is a finite multiset of symbols from Σ ∪ NT.
• φ gives a partial order on indices into α.

The similarity between this definition and the usual formal-
ism for context-free grammars (CFGs) is obvious. We have
extended the traditional notion with multiple starting symbols
and the explicit ordering constraint relation φ. These order-
ing constraints indicate when actions must be performed in a
specific order. Traditional CFGs productions take α to be a
string instead of a multiset, with φ given by the total order of
the symbols in the string. Here we assume that the actions in
α are unordered unless that φ states otherwise.

In a traditional CFG partial ordering is handled by replicat-
ing those rules that contain partial ordering, one production
rule for each of the possible orderings for the actions. Since
a system of the kind we are describing would be forced to
consider all of the possible orderings for the actions, using a
traditional CFG could result in a catastrophic increase in the
computational cost of the algorithm.

This formulation is also subtly different than in traditional
hierarchical task networks (HTNs) [Ghallab et al., 2004].
Some formulations of HTNs allow arbitrary applicability
conditions that must be true before a production can be used.
The plan library defined here is strictly less expressive than
these formulations of HTNs, but equivalent to HTN formula-
tions without these additional conditions.

Definition 2 Given a rule ρ = A → β : φ We say β[i] is a
leftmost child of A given ρ if @ j such that (j, i) ∈ φ.

We write L(ρ) for the set of all leftmost children given ρ; this
set describe exactly those symbols that are required to be first
in any expansion of the parent nonterminal by ρ. Note that
this definition does not require that there be a unique leftmost
symbol of a rule. We use R(ρ) to denote the set of all symbols
that are not leftmost of ρ.

Definition 3 Given a plan library 〈Σ,NT,R, P〉 we define a
leftmost tree T deriving α as a tree such that:
• Every node in T is labeled with a symbol from Σ ∪ NT.
• Every interior node in T is labeled with a symbol from

NT.
• If an interior node n labeled A in T has children with

labels β1, ...βk, then
– ∃ρ ∈ P such that ρ = A→ β1...βk : φ,
– Node n is additionally annotated with ρ
– No children of n labeled with symbols in R(ρ) have

children of their own.
– At most one child of n labeled with a symbol in L(ρ)

has children of its own.
• There is a distinguished node in the frontier of T labeled

with the terminal symbol α that is leftmost for its parent.
We call this the foot of the tree T .

Leftmost trees correspond very closely to minimal, leftmost,
depth-first, derivation trees for a specific terminal in tradi-
tional CFGs. In this case, the ordering relation defined for
the plan library is used to determine which nonterminals are
leftmost. We will use leftmost trees to build PFFGs. To do
this, we first define a generating set of trees:

Definition 4 A set of leftmost trees is said to be generating
for a plan library PL = 〈Σ,NT,R, P〉 if it contains all of the
leftmost trees that derive some basic action in Σ rooted at a
method in NT. We denote the generating set G(PL) and refer
to its members as generating trees.

Finally, on the basis of these generating trees we can define
the PFFG for the specific plan library.

Definition 5 We define the plan frontier fragment grammar
(PFFG) for the plan library PL = 〈Σ,NT,R, P〉 and its gen-
erating trees G(PL) as a tuple PFFGPL = 〈Σ,NT ′,R, P′〉
where:
• NT ′ ⊆ NT.
• P′ is the set of all production rules of the form

pid : 〈a, B〉 → α : φ

for a tree T ∈ G(PL):
– pid is a unique identifier for the production rule,
– a ∈ Σ; we say that a is the foot of T ,
– B ∈ NT ′; we say that B is the root of T ,

– α is the finite multiset of symbols over Σ ∪ NT equal
to the frontier of T with a removed.

– φ gives a partial order among the indices into α.

Effectively these definitions use a particular plan library to
produce the set of leftmost trees for library’s plans, and then
define a grammar that captures just the frontiers of the left-
most trees used in the construction of any of the original
plans. In so doing, we precompile information about the
structure and choices inherent in the plan without requiring
the grammar be totally ordered. This way of thinking about
the plan library allows us to maintain the state of the deriva-
tion of a particular explanation by just maintaining the fron-
tier of the explanation along with its ordering constraints.

Earlier we observed that PHATT’s operation resembled re-
cursive descent parsing in particular, and correspondingly for
these definitions to result in a finite PFFG we must bound any
recursion among productions of the plan library. Otherwise
the number of generating trees will be unbounded, resulting
in an infinite PFFG. To ease our analysis of the complexity
of the algorithm we will also assume without loss of gener-
ality that the initial plan library’s production rules contain no
epsilon productions [Aho and Ullman, 1992]. This does not
present a significant issue as they can be removed before pro-
duction of the PFFG using the traditional method for CFGs.
Since the process of producing the PFFG cannot introduce
epsilon productions, the resulting PFFG will not have them
either.

2.2 Explanations
A compiled plan library is an input, along with observed ac-
tions, to plan recognition; we must also formalize the outputs
of the process, the explanations.

Definition 6 We define a (possibly partial) explanation for
a sequence of observations σ1...σn, given a plan library
〈Σ,NT,R, P〉, as a tuple 〈σm+1...σn, α, φ, PS 〉 where:
• 0 ≤ m ≤ n, and σm+1...σn are those observations that

have not yet been explained.
• α is the explanation frontier, a finite multiset of symbols

from Σ ∪ NT representing the frontiers of the plans in the
explanation.

• φ gives a partial order on indices into α.
• PS = 〈pid1, α[i1]〉, 〈pid2, α[i2]〉, ..., 〈pidm, α[im]〉 is a se-

quence of pairs of production identifiers and elements of
α. PS records the specific productions that were applied
to produce α.

Definition 7 We define the pending attachment points for an
explanation e = 〈σi...σn, α, φ, PS 〉 as {αk : αk ∈ α ∧ @(j, k) ∈
φ} and we denote this set as AP(e)

2.3 Main algorithm
The main Yappr algorithm takes a PFFG and a sequence
σ1...σn of observations as inputs, and generates the complete
set of explanations for a given set of observations. We de-
fine the initial explanation for every problem as the tuple
〈σ1...σn, {}, {}, {}〉. Starting from this base case, we maintain
the set of explanations as we process each observation in turn.

There are three possibilities at each observation: 1) the ob-
servation removes a single terminal symbol from the expla-
nation, 2) the observation adds nonterminals to the frontier of
the explanation, and 3) the observation is the first action of a
previously unobserved plan. The algorithm below produces
the complete set of explanations for a given a set of observa-
tions and a PFFG. Each case is commented in the code.
PROCEDURE Explain({σ1...σn, PFFGPL = 〈Σ,NT,R, P〉})

D0 = {}; E = Emptyqueue();
Enqueue(〈σ1...σn, {}, {}, {}〉, E);
Process each observation in turn.
FOR i = 1 to n DO

Loop over all the explanations.
WHILE Nonempty(E) DO

E′ = Emptyqueue()
e = 〈σi...σn, α, φ, PS 〉 = Dequeue(E);
Extend existing plans.
FOR EACH B ∈ AP(e);

Remove terminals from the frontier.
IF B = σi, THEN

α′ = α − B;
φ′ = UpdateRemoving(φ, B);
Enqueue(〈σi−1...σn, α

′, φ′, PS 〉, E′);
END IF;
Expand the frontier.
FOR EACH pid : 〈σi, B〉 → γ : ψ ∈ P

α′ = (α − B) + γ;
φ′ = UpdateAdding(φ, ψ);
PS ′ = PS + 〈pid, B〉;
Enqueue(〈σi−1...σn, α

′, φ′, PS ′〉, E′);
END FOR EACH LOOP;

END FOR EACH LOOP;
Introduce new plans.
FOR EACH pid : 〈σi,C ∈ R〉 → γ : ψ ∈ P

α′ = α + γ;
φ′ = UpdateAdding(φ, ψ);
PS ′ = PS + 〈pid,C〉;
Enqueue(〈σi−1...σn, α

′, φ′, PS ′〉, E′);
END FOR EACH LOOP;

END WHILE LOOP;
E = E′
IF E is empty THEN fail;

END FOR LOOP;
RETURN E;
A small amount of further bookkeeping in each case ensures
that the ordering constraints are kept consistent, and that con-
straints refering to a removed actions are either deleted or ap-
propriately redirected to existing actions in the explanation.
This is the task of the UpdateRemoving and UpdateAdding
functions. Note that if none of these cases apply, the current
explanation is inconsistent with the current observation and
is pruned from the search.

Note the addition of 〈pid, B〉 to PS in the second and third
cases. If required, we can use PS with the ordered list of ob-
servations to recreate the entire tree structure. Walking the
list of pid, nonterminal pairs and adjoining a copy of the
tree structures from the plan library indicated by the pid at
the specified nonterminal, will allow us to reconstruct the full

plan structure underlying the explanatory model. Of course,
implementations which do not require the full generality of
queries which this log allows may simplify the representation
of explanations appropriately, possibly further improving per-
formance.

It is the fact that B is removed or replaced in α by γ, or that
γ is added to α that makes this algorithm very much in the
spirit of a string rewriting algorithm. The string of symbols,
α, representing the explanation frontier are rewritten by the
PFFG rules.

Keep in mind that each enqueue operation in the above
code creates a duplicate of the explanation structure to allow
the different rules to be applied separately. It is this copying
of the explanation structures that is less time consuming with
Yappr’s structures than with the forest of trees that PHATT
uses. We will return to discuss this in detail later.

2.4 Model counting and probabilibities
To complete the Yappr system, we must provide a mechanism
for computing the probabilities of the explanations we gener-
ate, and of individual goals driving some subsequence of the
observed actions. An explanation e for a sequence of obser-
vations obs = σ1 . . . σn is a set of plans each built to achieve
some multiset G0, ...,GI of the known goals R. There may
be multiple such explanations for fixed obs that differ in the
goals, plans being pursued, or assignment of observations to
plans. Leaving the observations implicit, we denote the com-
plete and covering set of such explanations for a given set of
observations as Exp, and the subset of Exp that make use of a
particular goal G as ExpG

We take a Bayesian approach to plan recognition, and so
compute the conditional probability of a particular goal given
the set of observations Pr(G|obs). By Bayes’ rule we have

Pr(G|obs) =
Pr(G ∧ obs)

Pr(obs)
or equivalently

Pr(G|obs) =
Pr(G ∧ obs)∑

∀G′∈R Pr(G′ ∧ obs)

where the denominator is the sum of the probability mass for
all goals. However given our definition, we know that the
plans in an explanation determine the goals in that explana-
tion. Given that Exp is complete and covering, we can rewrite
the previous equation as:

Pr(G|obs) =

∑
e∈ExpG

Pr(e ∧ obs)∑
e∈Exp Pr(e ∧ obs)

(1)

where the denominator sums the probability of all explana-
tions for the observations, and the numerator sums the prob-
ability of the explanations in which the goal G occurs.

Thus, if we can compute the probability of individual ex-
planations for the observations, we can perform plan recogni-
tion by weighted model counting. We build a mutually exclu-
sive and exhaustive set of possible explanations for the obser-
vations, compute the probability for each, and then sum the
probability mass of explanations that contain a particular goal
and divide by the probability mass of all of the explanations
of the observations.

To use Equation 1 to compute the conditional probability
for any particular root goal, we need to be able to compute
the probability of each explanation and the observations. We
use the following formula, which is very similar to the one
used in PHATT:
Definition 8

Pr(exp ∧ obs) =

I∏
i=0

Pr(Gi) ·
n∏

i=1

Pr(rulei)
|ext(AP(expi))|

where:
• obs = σ1 . . . σn.
• Pr(Gi) is the prior probability of the goals Gi being pur-

sued; the set of pursued goals is easily extracted from the
productions PS of the explanations.

• Pr(rulei) is the probabilistic contribution of any plan
choices that are captured within the rule, precomiled with
the PFFG. Recall that any any particular PFFG rule may
actually encode the choice of multiple productions from
the original plan library; the likelihood of the agent mak-
ing each of these choices must be captured in the model’s
probability.

• ext(AP(expt)) is the set of rules applicable to an expla-
nation immediately prior to observation t; it is just the
set of all the production rules that could be applied given
the pending attachment points. The size of this set in the
formula expresses the likelihood of choosing one such ex-
pansion.

This definition assumes that Pr(rulei) is precomputed, and
that the choice from ext(AP(expi)) is made uner uniform
probability. In fact, modeling these decision making pro-
cesses is a very complex problem, and nothing in our ap-
proach rules out more complex probability models for them.
However, for simplicity and low computational cost in our
comparisons, we have assumed that each of these choices is
captured by a uniform distribution. In the former case, the
probability for each PFFG rule is computed offline when the
PFFG is created and associated with its respective rule, and
so the corresponding calculation is just the multiplication of
these precalculated constants. In the latter case, the book-
keeping for counting the possible productions is a simple ex-
tension of procedure Explain, whose details we elide. This
allows the second term in the above equation to be computed
by taking the product of the probabilities associated with each
production used in the explanation.

One subtle point about the calculation of |ext(AP(expi))| is
worth mentioning. When a new goal is introduced it is nec-
essary to modify this number for each preceding time point.
Since our model is based on the assumption that the set of
goals is determined before the actions are started, when a new
goal is first observed it is possible that any of the lead actions
for the new plan could have been done earlier. This means
that when we add a new goal to an explanation we need to
account for the possibility that it could have been performed
earlier, and this requires modifying the recorded sizes of the
pending attachment point sets. Note however, this is a O(n)
operation where n is the number of observed actions, and as
we will see, it is dominated by the cost of explanation con-
struction.

3 Complexity analysis
Having given the Yappr algorithm, we still need to show that
it will be more efficient than model construction based on tree
adjunction. We will show this by considering the complexity
of the model construction algorithm.

In Yappr, the complexity for generating a single explana-
tion is O(nlog(m)) where n is the number of observations to
be explained, and m is the length of the longest plan possible
in the plan library. We argue for this in the following way. For
a single explanation, for each of the n observations, a single
PFFG rule is instantiated, the nonterminal is removed from
the explanation, and the right hand side of the instantiated
PFFG rules is inserted.

With efficient data structures the removal of the nontermi-
nal and the insertion of the right hands side of the PFFG rule
can be done in constant time, however the instantiating of the
PFFG rule requires creating a copy of the rule. This process
is dominated by the copying of the right hand side of a PFFG
rules. The length of the right hand side of the any PFFG rule,
corresponds to the depth of the original plan tree, and so costs
O(log(m)) to copy and instantiate.

Note the O(log(m)) length of the rules holds even if there
are multiple nonterminals at each level of the leftmost trees
that generated the PFFG. To see this, let K to be the maximum
length of any of the production rules in the initial library. This
means that any individual level of one of the leftmost trees
can have no more than K nonterminals and by extension the
length of any rule in the PFFG can be no longer than Klog(m).
K ≤ m and for most domains K << m. This only expands the
PFFG right hand by a constant and the depth of the original
plan tree dominates this feature for all domains where K <<
m.

Given that the PHATT algorithm is adjoining leftmost
trees, its complexity is not significantly different for this por-
tion of the problem. To see this, consider that the significant
difference between a single leftmost trees and a PFFG pro-
duction rule is the addition of a O(log(m) number of nonter-
minals that act as a spine for the attachment of the frontier
symbols. We do note that the constant for the Yappr algo-
rithm should be significantly smaller.

As we argued in the introduction, the significant savings for
Yappr is in the smaller size of the data structure it uses to rep-
resent the plans in an explanation. In Yappr, as in PHATT, the
creation of each explanation requires copying the explanation
structure. Since in the worst case there can be an exponential
number of explanations to consider [Geib, 2004] the size of
the data structures to be copied is critical.

In PHATT each explanation is a forest of tree structures,
in the worst case a single tree of O(2n − 1) nodes has to be
copied for each of the explanations. Bounding the size of the
Yappr data structure is a little more challenging. In order to
copy an explanation in Yappr, we must copy both the model’s
frontier and the ordering constraints.

First, we consider the ordering constraints. If we let the
size of the explanation frontier be m, then in the worst case
there is an ordering constraint between each pair of actions in
m, resulting in m2 constraints that need to be copied. Given
the absence of epsilon productions in the initial grammar, the

size of the explanation frontier must be less than or equal
to the number of observations. Therefore in the worst case,
copying the ordering constraints would take O(n2).

Note that given the absence of epsilon productions the fron-
tier itself can never exceed n elements in length making the
copying of the frontier O(n), and dominated by the constraint
copying process. Therefore the worst case O(n2) sized copy
operations for our algorithm represents a significant savings
over the tree copying algorithm.

For less densely connected graphs the effective complex-
ity of the Yappr data structure will be less that O(n2) and
the resulting savings will be greater. Most promising for the
Yappr algorithm, the greatest number of explanation copy op-
erations occurs precisely when the actions in the plan are least
ordered. Plans with completely unordered actions result in a
very large number of possible explanations. However, in pre-
cisely these cases, the Yappr explanation copying operation
reduces to O(n) since only the frontier needs to be copied and
there are no ordering constraints. Thus the greatest computa-
tional savings from the smaller size of the copy operations for
Yappr occurs exactly in the most computationally expensive
cases. Our experiments confirm this.

We also consider the cost of computing the probability of
an explanation in the Yappr data structure. Inspection of Def-
inition 8 shows that we have to perform operations on each of
the rules used. These multiplications can be done in a single
pass as can the computing the probability of the root goals.
Thus, the cost of computing the probability for a single expla-
nation in Yappr is O(n), and is dominated by the construction
of the explanations.

4 Experimental results
To strengthen and verify the complexity results of the pre-
vious section, we implemented Yappr in Allegro Common
Lisp (ACL) and ran empirical studies to directly compare the
runtime of the PHATT and Yappr systems on the same input
data. Our experiments were conducted on a single machine,
a dual AMD 2000+ (1666.780) running Kubuntu Linux 7.04.
We used ACL’s timing facilities to measure the CPU time of
the algorithms alone, excluding garbage collection and sys-
tem background process activity.

All of our experiments began by generating a plan library
to be recognized. These libraries were represented as partially
ordered and/or trees that are similar to HTNs [Ghallab et al.,
2004]. In this case and-nodes in the tree correspond to HTN
methods and or-nodes correspond to the presence of multiple
methods for a single goal in the plan. For all plans the root
node was defined to be an or-node, and the plan alternated
layers of or-nodes and and-nodes.

There are a number of features that define a plan library:

• Root goals: The number of top-level root goals.

• Plan depth. The depth of each plan tree in the library.
Our plan libraries are made up of alternating layers of
and-nodes and or-nodes, we define a depth of one to
mean each plan has one layer of or-nodes followed by
one layer of and-nodes. A depth of two means there are
two such two-ply layers.

• And-node branching factor. The number of children for
each and-node. Note this factor when combined with
the plan depth determines the length of each plan in the
library. For example, a plan with depth two and and-
node branching factor of three has nine (32) observable
actions.

• Or-node branching factor. The number of children
for each or-node. Since or-nodes represent alternatives
in the plan, this factor has no effect on the length of
plan instances but along with the plan depth and and-
node branching factor determines the number of possi-
ble plans for each root goal in the library.

• Order. Within each and-node the order factor determines
if and how the siblings are related via causal ordering
links. We will examine four possible ordering condi-
tions.

– Total. Children of an and-node are totally ordered.
Each child action has a single ordering constraint
with the child action that precedes it.

– First. The children of each and-node have a desig-
nated first action. All other sibling actions are or-
dered after it but are unordered with respect to each
other.

– Last. The children of each and-node have a desig-
nated last action. All other sibling actions are or-
dered before it, but are unordered with respect to
each other.

– Unord. The children of each and-node are com-
pletely unordered with respect to each other.

It is this last feature, order, that we treat as an experimental
factor here. We hold the rest of these features constant with
the following values:

Root goals 100
Plan depth 2

And-node branching factor 3
Or-node branching factor 2

For each of the different values of the order factor, we gen-
erated 100 data points by randomly selecting one root goal
from the plan library and generating a plan for that root goal
that obeyed the rules and ordering constraints in the plan li-
brary. Thus, each data point was nine observations long and
contained no noise. Each such list of observations was then
presented in turn to both Yappr and PHATT to compute the
conditional probabilities for the goals. To provide the most
equivalent runtime environments possible for each invocation
of each algorithm, we triggered a full garbage collection be-
forehand. For each run we imposed a thirty second timeout
on the problem. The runtimes for each test case are presented
in Figure 1, and summarized in Table 1.

ACL’s timing facility cannot resolve times of less than ten
msec. This resulted in the system reporting a runtime of zero
milliseconds for several cases in the Total and First orderings.
In cases of a zero reported runtime, we have instead depicted
a runtime of five milliseconds. This was done to more accu-
rately reflect the reality of the process taking some non-zero
amount of time.

Order Algorithm Mean Std. dev.
Unord Yappr 15728 78.4
First Yappr 6.6 2.31

PHATT 19.3 2.92
Last Yappr 20.3 7.54

PHATT 192.7 49.1
Total Yappr 7.40 3.77

PHATT 40.7 60.5

Table 1: Summary of run times (in milliseconds).

Across all tests Yappr outperformed PHATT (in some cases
by almost an order of magnitude). These results clearly
demonstrate the gains available by using the Yappr approach.
We discuss the results for the individual tests in turn.

As we described in the previous section, Yappr saves the
most on its copy operations when the frontier has the fewest
ordering constraints. This can be seen clearly in Figure 1(a)
which graphs the runtimes for plans with the Order factor =
Unord. In these cases, even though PHATT and Yappr must
compute the same number of explanations, the savings from
the smaller models allows Yappr to solve problems PHATT
is simply incapable of. In none of these cases was PHATT
able to solve the problem within the thirty second timeout
bound, or indeed within larger bounds of several minutes,
while Yappr was able to solve all of them in under seventeen
seconds. While this difference is not as profound in more
ordered cases, it is present across all of the values of Order.

Consider the Order = Last case in Figure 1(b). Here Yappr
outperforms PHATT by almost an order of magnitude. For
clarity, in all of these figures we have added a line represent-
ing the average runtime for each system. Note that Yappr has
a lower variance than PHATT. The relatively high variance of
both systems is caused by considering models with multiple
instances of the root goals that are discarded when the final
action is seen.

Next, consider the Order = first case in Figure 1(c). While
we see a drop in runtime below one second for both systems,
Yappr’s runtime still is less than half that of PHATT, and dis-
plays a smaller variance than PHATT. Finally, in totally or-
dered libraries shown in Figure 1(d) we see the same trends.
Note that in this final case the runtimes on the y-axis is plotted
on a log scale to accommodate the large standard deviation of
the PHATT runtimes. Yappr again outperforms PHATT and
has a smaller variance.

All of these experiments provide confirmation of our
claims for the Yappr approach. Across the tested ordering
constraints the experiments show the Yappr approach yields
faster results and lower variance.

5 Limitations
Yappr’s algorithm is optimized to be able to answer queries
about the root goals being pursued in a set of plans. The
model building process only returns the current explanation
frontier and the set of rules used to create it. From this we
can query for the root goals, but not more complex queries.

For example, suppose we want to know the probability
that a particular method was used to achieve a goal. With

 15500

 15600

 15700

 15800

 15900

 16000

 16100

 0 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
(m

s)

Observation sequence

(a) Order = Unord

Yappr mean=15,728, std. dev.=78.4

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
(m

s)

Observation sequence

(c) Order = First

Yappr mean=6.6, std. dev.=2.31

PHATT mean=19.3, std. dev.=2.92

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
(m

s)

Observation sequence

(b) Order = Last

Yappr mean=20.3, std. dev.=7.54

PHATT mean=192.7, std. dev.=49.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
(m

s)

Observation sequence

(d) Order = Total

Yappr mean=7.40, std. dev.=3.77

PHATT mean=40.7, std. dev.=60.5

Figure 1: Runtimes comparing Yappr and PHATT. All graphs plot time in milliseconds on the vertical axis. Each Yappr and
PHATT runtime is plotted as a plus-sign or X respectively. Solid lines show mean runtime with dotted lines show one standard
deviation from the mean. Note in Graph (a) only Yappr’s performance is shown. PHATT did not terminate on examples from
this library, even allowing timeouts of several minutes.

PHATT’s complete plan tree representations it would be rela-
tively easy to select those explanations that had this structure
by walking the plan trees of each of the explanations. In order
to do the same thing with Yappr, the full plan structures must
be reconstructed from the set of observations and the list of
applied rules.

Given access to the generating trees for the original gram-
mar, reconstructing a single explanation with n observa-
tions and m being the length of the largest plan will take
O(nlog(m)) time. This follows from our previous argument
about the complexity of explanation building. Of course,
again the critical question is how many explanations need to
be reconstituted. We can imagine domains where there is very
little copying of the explanations and very few explanations

are pruned as being inconsistent with the observations. In
such domains, if these more complex queries are required, it
remains to be seen if Yappr would still outperform PHATT.

Yappr is only able to recognize the set of plans that are en-
coded in the plan library that is initially provided. However,
this does not mean Yappr is unable to generate an explanation
for observation streams that contain such “unknown” plans.
To do this, we include productions in the plan library that al-
low each action to be done as a root goal. This allows Yappr
to build explanations in these cases, while still treating these
more complex explanations as less likely than explanations
with fewer root goals for known plans.

6 Related work

We have discussed the relationship of Yappr to PHATT in
detail, but there is a large amount of other related work. Hu-
ber at al. [1994] give an early approach to compiling plans
into HTN-like structures for plan recognition. Geib and Gold-
man [2009] give a more complete survey of plan recognition
algorithms and their complexity. We are not the first to sug-
gest that plan recognition can be done by a process similar
to probabilistic parsing. Pynadath and Wellman [2000] pro-
posed the use of probabilistic context-free grammars for plan
recognition. Yappr addresses a number of issues that are not
addressed by Pynadath and Wellman, including cases of par-
tially ordered plans and multiple interleaved plans.

The idea of maintaining only a subset of parse trees has
also been used before in parsing. Most common parsing algo-
rithms for context free grammars, including CKY [Younger,
1967], do not maintain an entire parse tree but instead only
maintain the derived nonterminals of the grammar. However,
to the best of our knowledge, this approach has never been
used in plan recognition to reduce the overhead of maintain-
ing explanatory models.

Our deployment of Yappr to the SPDR security system
[Haigh et al., 2009] provided insight into Yappr’s usability
and limitations. Our top-down use of PFFGs restricts the
form of plan library rules in a manner similar to that placed
on grammars in top-down parsing. We also found that some
transformation of plan libraries was required for acceptable
system performance: when several decompositions of goals
or sub-goals all begin with a common prefix of actions, the
space of explanations can grow quickly as all of these ex-
planations must be separately maintained until a distinguish-
ing action comes several relevant observations later. When
this effect applies to several goals being executed concur-
rently, Yappr’s performance degrades. In SPDR we addressed
these difficulties by transforming the rules to factor common
prefixes above disjunctions, but this introduction of internal
symbols can make intermediate states difficult for the hu-
man monitor to understand. Parsing techniques may again be
applicable: Leermakers et al. [1992] have considered com-
pact storage of parse tree forests in their treatment of recur-
sive ascent parsers; we hope to adapt their techniques both
to relaxing the allowable forms of grammars, and avoiding
obscuring transforms via more compact explanation storage.
Geib [2009] has developed a new algorithm exploring some
of these ideas.

7 Conclusions

In this paper, we have argued that explicitly representing tree-
based explanation in plan recognition is needlessly costly.
Instead of using tree fragments and adjunction to construct
models for plan recognition, we have formalized the idea of
plan frontier fragment grammars and shown how they can be
used to build models in a manner similar to string rewriting.
We have then provided a complexity argument for this ap-
proach and shown its improved performance over the PHATT
system.

Acknowledgments
This material is based on work supported by (DARPA/U.S.
Air Force) under Contract FA8650-06-C-7606 and the EU
Cognitive Systems project PACO-PLUS (FP6-2004-IST-4-
027657) funded by the European Commission.

References
[Aho and Ullman, 1992] A. V. Aho and J. D. Ullman. Foun-

dations of Computer Science. W.H. Freeman/Computer
Science Press, New York, NY, 1992.

[Blaylock, 2005] N. Blaylock. Toward Tractable Agent-
based Dialogue. PhD thesis, University of Rochester,
2005.

[Geib and Goldman, 2003] C. Geib and R. P. Goldman. Rec-
ognizing plan/goal abandonment. In Proceedings of IJCAI
2003, pages 1515–1517, 2003.

[Geib and Goldman, 2009] C. Geib and R. P. Goldman. A
probabilistic plan recognition algorithm based on plan
tree grammars. Artificial Intelligence, 2009. In press,
doi:10.1016/j.artint.2009.01.003.

[Geib, 2004] C. Geib. Assessing the complexity of plan
recognition. In Proceedings of AAAI-2004, pages 507–
512, 2004.

[Geib, 2009] Christopher W. Geib. Delaying commitment in
plan recognition using combinatory categorial grammars.
In Proc. IJCAI-09, 2009.

[Ghallab et al., 2004] M. Ghallab, D. Nau, and P. Traverso.
Automated Planning: Theory and Practice. Morgan Kauf-
mann, 2004.

[Haigh et al., 2009] J. T. Haigh, S. A. Harp, R. O’Brien,
J. Gohde, J. Maraist, and C. N. Payne. Trapping ma-
licious insiders in the SPDR web. In Proceedings of
the 42nd Hawaii International Conference on System Sci-
ences, pages 1–10, 2009.

[Huber et al., 1994] Marcus J. Huber, Edmund H. Durfee,
and P. Wellman M.˙ The automated mapping of plans for
plan recognition. In Proc. 1994 Distributed AI Workshop,
pages 137–152, 1994.

[Leermakers et al., 1992] R. Leermakers, L. Augusteijn, and
F. E. J. Kruseman Aretz. A functional LR parser. Theoret-
ical Computer Science, 104:313–323, 1992.

[Pynadath and Wellman, 2000] D. Pynadath and M. Well-
man. Probabilistic state-dependent grammars for plan
recognition. In Proceedings of the 2000 Conference
on Uncertainty in Artificial Intelligence, pages 507–514,
2000.

[Steedman, 2000] M. Steedman. The Syntactic Process. MIT
Press, 2000.

[Younger, 1967] D. Younger. Recognition and parsing of
context-free languages in time n3. Information and Con-
trol, 2(10):189–208, 1967.

