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Abstract

Partial observability of the domain prevents
the application of many plan recognition al-
gorithms to real world problems. This paper
presents a treatment for partial observability
for a specific probabilistic plan recognition al-
gorithm and an initial analysis of the runtime
impact.

1 Introduction

There has been significant recent work in plan recogni-
tion based on models of plan execution[Bui et al., 2000;
Goldman et al., 1999; Pynadath and Wellman, 2000].
This research is motivated by an effort to make practical
applications of this approach to a number of different
domains, including computer network security, assistive
systems for elders, and insider threat detection. All of
these domains are only partially observable. Unfortu-
nately, the large number of domain features, without sig-
nificant modularity or probabilistic state transition mod-
els makes using an Abstract Markov Model(AMM)[Bui
et al., 2000] difficult. Methods based on probabilistic
grammars[Pynadath and Wellman, 2000] do not han-
dle concurrent and interleaved goals preventing their ap-
plication. Other probabilistic plan recognition systems
[Charniak and Goldman, 1993; Conati et al., 1997] do
not model plan execution, which is required for signifi-
cant reasoning about missing observations.

In previous work [Geib and Goldman, 2001b],we have
put forward a limited solution to the problem of partial
observability that requires additional logical reasoning
and places an a priori fixed bound on the number of
unobserved actions that the system will consider. This
earlier solution was somewhat ad hoc, and did not per-
mit accurate modeling of situations where some actions
are more easily observed than others. Further, our pre-
vious work spent significant effort to identify when other
actions provided evidence of previously unobserved ac-
tions. In this paper, we present an alternative probabilis-
tic formulation that avoids such reasoning and eliminates
the limitations of our previous solution.

In the rest of this paper we will briefly review our
approach to probabilistic plan recognition, and then de-
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scribe how it can be extended to handle partially ob-
servable domains. Our solution adds significant compu-
tational costs for the algorithm, and we will provide some
experimental data showing this in our implementation.
After this we will discuss the theoretical implications for
the runtime, and discuss how the effects of the compu-
tational cost can be ameliorated.

2 Background

The Probabilistic Hostile Agent Task
Tracker(PHATT) [Goldman et al, 1999;
Geib and Goldman, 200la; 2001b] is based on a
model of the execution of simple hierarchical plans [Erol
et al., 1994] rather than plans as formal models. Fig-
ure 1 displays examples of a hierarchical plan of the
kind that PHATT assumes. In this discussion, the plans
in the library will be represented as partially ordered
and/or trees: in Figure 1, “and nodes” are represented
by an undirected arc across the lines connecting the
parent node to its children; “or nodes” do not have this
arc. Ordering constraints in the plans are represented
by directed arcs between the actions that are ordered.
For example in Figure 1 action scan must be executed
before get-ctrl before get-data. Following standard use,
we refer to the children of OR-nodes as “methods,” and
an agent’s choice between these alternatives as “method
choice.” The leaf nodes in the tree are referred to as
“primitive actions.”

2.1 Algorithmic Intuition

The central realization of the PHATT approach is that
plans are executed dynamically and that at any given
moment the agent is able to execute any one of the ac-
tions in its plans that have been enabled by its previous
actions. To formalize this, initially an agent chooses a set
of goals. On the basis of these goals that agent chooses
a set of plans to execute to achieve these goals. The
set of plans chosen determines a set of pending primitive
actions. That is, the set of actions within the plan that
are enabled by some other action within the plans. Each
initial pending set represents the possible first actions
the agent could perform that would contribute to the
plan(s) it has chosen to meet its goal(s).
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Figure 1: An example plan library.
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Figure 2: A simple model of plan execution.

The agent executes one of the pending actions, gen-
erating a new set of pending actions. In most cases the
executed action itself is removed from the pending set
and actions that are enabled by the executed action are
added to the pending set. The next action the agent ex-
ecutes will be chosen from this new pending set and the
process repeats until the agent stops performing actions
or finishes all of its plans. This process is illustrated in
Figure 2. Each state is conditionally independent of the
history, given its immediate predecessor, so we have a
Markov chain. Since the pending sets are not observable,
this Markov chain is a Hidden Markov Model (HMM).

To use this model to perform probabilistic plan recog-
nition, PHATT treats the observed actions as an exe-
cution trace and hypothesizes goals and plan structures
to explain the observed actions. Given a set of hypoth-
esized goals the agent may have, PHATT can generate
the agent’s pending sets. When PHATT reaches the end
of the set of observations it will have the complete set
of pending sets that are consistent with the observed ac-
tions and the sets of hypothesized goals that go with
each such explanation. By building the complete set of
explanations for the observations, PHATT can establish

! Actions that can be repeatedly executed are left in the
pending set.

the probability of each explanation, and on the basis of
this, the conditional probability of any particular goal.

More formally, we define an explanation as a minimal
forest of plan trees with pending sets recorded for each
time-step, and expansions chosen for each AND-node and
OR-node node sufficient to allow the assignment of each
observation to a specific primitive action in the plans.
Note that for each possible explanation, there is a unique
corresponding sequence of pending sets. An explana-
tion is mot simply a set of goals; it also includes method
choices and ordering decisions and the pending sets. As
a result there may be multiple possible explanations for
any single set of goals.

As an example, given the plan library shown in Fig-
ure 1, one possible explanation for the sequence of ob-
servations (zt,1), (ips,2), (ps,3), (pod,4), is shown in
Figure 3. Note the use of an integer time notation in the
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Figure 3: An explanation.



observations.

In the pending sets, each pair refers to the use of a par-
ticular primitive action to contribute to the achievement
of a specific method that will be added to or extends
the existing plan. For example the pair (zt, DOS) in
the initial pending set (PS(0)) represents the possibility
of an observed zone transfer action, zt, contributing to
a plan for a denial of services attack, DOS, while (ips,
Scan) in PS(1) represents the possibility of an ip-sweep,
ips, contributing to the Scan method in the previously
hypothesized DOS plan explaining (zt, 1).

Thus, PHATT first builds a complete and covering set
of explanations for the set of observations, then it estab-
lishes the probability of each explanation. On the basis
of the probability of each explanation it then computes
the conditional probability that the agent is pursuing any
particular goal. While the worst case cost of computing
the covering set of explanations can be prohibitive, our
experience suggests this is not a problem in practice.
We refer the reader to Geib [2004] for a discussion of the
complexity of this process.

2.2 Computing Probabilities

PHATT takes a Bayesian approach to plan recognition.
That is, it computes Pr(exp|obs), the probability of an
explanation exp given a set of observations, obs, using
Bayes’ rule:

Pr(exp A obs)/Pr(obs)

The implementation, like most Bayesian systems, ex-
ploits the equivalent formulation:

Pr(exp A obs)/ Z Pr(exp; A obs)

(2

PHATT computes the joint probability of a particular
explanation and observation set, Pr(obs|exp)Pr(exp),
by factoring it into three kinds of probabilistic features.
First, the prior probability of each of the root goals, G;,
being adopted by the actor, Pr(G;). In PHATT, the
set of root goals and prior probabilities is given with the
plan library.

Second, for each choice action (OR-node), PHATT
must have a probability of method choice given parent
node. For example if a cyber attacker could use a land,
synflood, or POD for a denial of service (DoS) attack,
PHATT must have a distribution over how likely each
of these possible attacks are given that the agent is go-
ing to commit a DoS attack. Typical PHATT models
assume that each method is equally likely given its par-
ent, but this simplifying assumption is not required by
the framework. Given this assumption, if the number of
children for or-node j is |Ch;|, we have 1/|Ch;|.

Taken together, the above two factors are sufficient
to describe a probability distribution over subtrees of
the plan library. However, they are not enough to de-
scribe an ordered trace of primitive action executions.
For this, we need to order the action executions, subject
to the constraints imposed by the plan library. The third
factor takes care of this: for each pending set, PHATT

computes the probability that the observed action is the
one chosen next for execution. Again, we usually assume
that all members of a pending set, PS(k) are equally
likely to be chosen, giving us 1/|PS(k)|.

On the basis of these three classes of parameters,
PHATT computes the joint probability of a given ex-
planation and the observation trace. It does so by mul-
tiplying together the priors for each goal, the probability
of the expansion choices, and the probability of the ob-
served actions being chosen. More formally:

Definition 1 Pr(exp, obs) =

I J K
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where the first term is the probability of the agent’s goal
set, the second term the probability that the agent chose
the particular plans to achieve the goals, and the final
term captures the probability that the given observations
occurred in the specified order.

Since, the set of explanations is, by construction, an
exclusive and exhaustive covering of the set of observa-
tions, these computed probabilities for each explanation
can be normalized to yield conditional probabilities for
each explanation given the observations. To find the
probability that an agent has a particular goal, G;, given
a set of observations, we sum the probabilities of all ex-
planations that contain G;, which we notate as the set
Ezpg, That is:

Definition 2 Pr(G;|Obs) =

Ezpg, FExp

Z Pr(e,Obs)/ Z Pr(e, Obs)

where the denominator sums the probability of all ex-
planations for the observations, and the numerator sums
the probability of the explanations in which the goal G;
occurs. Further conditional queries can be computed
by summing the probability mass for those explanations
that meet the terms of the query and dividing by the to-
tal probability mass associated with all the explanations
for the observations.

A common misconception is that the denominator in
Definition 2 will always be one, making this division un-
necessary. Recall, however, that this is an application
of Bayes’ law, so that the denominator is also Pr(obs):
the probability of the observation set. It is a rare (and
uninteresting) domain that admits a single observation
trace of probability one!

With this model of plan recognition couched in terms
of plan execution, PHATT is able to handle a number
of problems that are critical to application to real world
domains including: Multiple interleaved goals, partially
ordered plans, the effects of context on the goals adopted,
the effect of negative evidence or failure to observe (“the
dog didn’t bark in the nighttime” ), missing observations,
and observations of failed actions. We refer readers to
[Geib and Goldman, 2001b; 2001a; Goldman et al., 1999]
for a more complete discussion of these issues.



3 Handling Partial Observability

We can build a conceptually simple treatment of partial
observability on this approach to plan recognition. To
do this, first, the probability that the observed agent has
actually performed some action, but it was not observed,
is quantified. That is, the probability that there is no
observation, given a particular action: Pr(—obs(a)|a).
Second, we fold this probability into the formula for com-
puting the probability of a given explanation. Third,
because the resulting set of explanations is infinite, we
modify the algorithm for generating explanations to
eliminate any explanation in which the probability of
failure to observe exceeds a user defined threshold. We
will discuss each of these steps in more detail.

3.1 Quantifying the Probability of Not
Observing

We are rarely equally likely to observe all actions in a
domain. For example, the US Government is much more
likely to be aware of underground testing of a nuclear de-
vice than it is to recognize a very slow port scan on one of
their computers. Relative to the sensors available, some
actions are harder to detect than others. That is, we are
concerned with the false negative rate for a given sensor.
This feature of the sensor can be learned by watching its
long term performance and noting when it fails to report
if there has been an actual occurrence. We assume that
for each possible observed action, we will learn the long
term false negative rate of our observation stream and
use this as the prior probability that the action might
not be observed when it is performed, Pr(—obs(a)|a), or
simply Pr(Unobs,).

3.2 Computing Probabilities

Having an explicit model of the probability that a partic-
ular action could be performed and not observed makes
computing the probability of a given explanation and
observations relatively easy. The following new defini-
tion for the probability of an explanation and observa-
tions extends Definition 1 with a final term to explicitly
model the probability that all unobserved actions in the
explanation are executed and not observed.

Definition 3 Pr(exp,obs) =

J K L

I
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Where the index L ranges over all of the actions in the
explanation that are hypothesized as having been exe-
cuted but not observed. There is no change in the for-
mula for computing the conditional probability for a spe-
cific goal.

3.3 Changing the algorithm

Extending the definition of the probability of an expla-
nation to cover unobserved actions is not enough. We
must also address the question of how to generate expla-
nations that make use of unobserved actions.

Section 2 describes an algorithm for building explana-
tions that incrementally processes each of the observa-
tions to advance PHATT’s pending set. In the work de-
scribed here, we extended the algorithm for generating
explanations to explicitly consider the possibility that
some actions that not present in the observation stream
were actually executed. Note that, given the assump-
tion that the agent will not engage in actions that do
not contribute to its goals, even unobserved actions must
be within the pending set of the observed agent. This
significantly constrains the set of actions that can be ex-
ecuted even unobserved. Thus, the following algorithm
will not consider the possibility of unobserved actions
that are inconsistent with the current pending set of the
agent.

To produce a complete and covering set of explana-
tions for the observations, explanation generation must
be extended to consider the possibility that every ac-
tion in the pending set may be executed next and not
observed. This results in a two stage explanation gener-
ation algorithm. First, the algorithm considers the pos-
sibility that each of the actions in the pending set is per-
formed and not observed. Second, following the original
algorithm, it generates those explanations in which no
unobserved action was performed but instead the next
action in the observation stream was performed. This
results in a significant expansion of the search space.

3.4 Thresholding the Production of
Explanations

Without further mechanisms, the algorithm provided
above will not terminate building explanations. While
the original algorithm naturally terminates at the end of
the observation stream, nothing in the algorithm speci-
fication we have provided states when the system must
stop considering the possibility of ever more unlikely ex-
planations with streams of unobserved actions.

To address this we require the user to provide a thresh-
old value that determines how unlikely an explanation
they are willing to accept, relative to unobserved ac-
tions. Specifically, the algorithm, removes any explana-
tion where:

L

H Pr(Unobs;) < Threshold

1=0
This allows the user to specify, for example, that they
are only willing to accept explanations, such that ninety
percent of the time the unobserved actions could have
been done and not noticed.

Since the algorithm is generating explanations incre-
mentally, thresholding the acceptable explanations pro-
vides a natural method for limiting the search for ex-
planations, and provides a stopping criteria for the al-
gorithm. At some point the addition of another unob-
served action will drive the current explanation below
the threshold. At this point we prevent the addition of
this unobserved action and stop considering the addi-
tion of other unobserved actions. If all of the observa-
tions have been explained this explanation can be kept.



Te+007

Te+006

100000

Time (ms)

10000

OO SO W

1000

100

Number of Observations

Figure 4: runtimes for Fully Observable Domain

If there are still remaining observations the algorithm
must attempt to explain the remainder without consid-
ering unobserved actions.

Notice that this approach allows the system to differ-
entially consider actions on the basis of their false neg-
ative rates. That is, at the same threshold value, the
system will consider explanations with more instances of
actions that are more likely to have been performed and
not observed than actions that are not likely to have been
performed and not observed. For example, the system
would more easily consider an explanation with multiple
stealthy port scans (low probability of observation) than
an explanation with even a single unobserved successful
denial of service on one of its critical DNS servers (high
probability of observation).

4 Implementation

To test this approach we have extended the PHATT al-
gorithm with the changes described in the previous sec-
tions. All of the empirical results we will report were
generated with our implementation of PHATT written
in Allegro Common Lisp 6.2 on a T00MHz Pentium III.

4.1 Runtime Cost

To explore the runtime costs of this algorithm we chose
two instances of plans from the plan library shown in
Figure 1. These plan instances are interleaved, preserv-
ing the partial ordering constraints of each of the plans.
We ran fifteen hundred such plan instances without con-
sidering the possibility of unobserved actions (i.e. the
Threshold was set to 1.0) the majority of the plans had
a runtime of under a second. The actual runtimes are
shown in Figure 4.

Unfortunately, considering even the very most likely
unobserved actions has a significant impact on the algo-
rithm’s runtime. By lowering the threshold to 0.75 all of
the instances’ runtimes were forced above a single second
and all of the examples longer than twelve observations
were in excess of 100 seconds. The actual runtimes are
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Figure 5: runtimes for partially Observable Domain

shown in Figure 5, with those test cases longer than 100
seconds left off the graph.

In all of these test cases the system was very accurate,
correctly identifying the component plans with proba-
bility greater than .75. However it should be noted that
the purpose of these tests was to examine the runtime
requirements for the system. While we do not anticipate
a significant increase in the runtime with more ambigu-
ous plans, it should be noted that the plans in these test
cases do not have a high degree of ambiguity. We are
working on producing a thorough and complete evalu-
ation of the sources ambiguity and its effects for this
algorithm.

4.2 Threshold Effects

Figure 5 makes clear the cost of considering partial ob-
servability in domains. The significant increase in run-
time is not really a surprise. By considering the possi-
bility of unobserved actions, the algorithm we have de-
scribed moves from considering only those elements in
the pending set that are consistent with the next ob-
served action to having to consider all of the elements
in the pending set. Thus the search space of possible
explanations has significantly increased.

While the user defined threshold clearly has an effect
on the size of the explanation search space, there is not
a simple relation between them. The branching factor of
the search space at each explanation critically depends
on how many and what kind of unobserved actions have
already been hypothesized.

To consider the worst case, Geib [2004] has shown
that even in completely observable domains, the branch-
ing factor of the search space of explanations for this
sort of algorithm, is exponential for plans that share a
set of initial actions that are unordered with respect to
each other. Consider such a case in a partially observ-
able domain where the user defined threshold is sufficient
to allow the initial actions to be performed unobserved.
There will be an exponential increase in the size of the
search space (caused by the initial unordered actions)



until the threshold allows the algorithm to filter more
unobserved actions.

Conversely, in the best case, very high threshold values
will all but prevent the algorithm from considering un-
observed actions and thereby adding to the algorithm’s
runtime. Thus setting the threshold parameter is criti-
cal to achieving reasonable runtimes and mitigating the
effects of the increased search space.

4.3 Setting the Threshold

While we cannot provide a formula to compute an opti-
mal threshold value for a domain, experience has shown
us three rules that can help in setting the threshold.

1. The base line PHATT algorithm has some variabil-
ity in its runtime. To get a feeling for this, if it
makes sense for the domain, we suggest running the
new algorithm the first time with a threshold high
enough to prevent the considering of unobserved ac-
tions. This will not only provide a base line for un-
derstanding the runtime of the domain, but will also
provide some understanding of the plans that may
be identified without partial observability.

2. Offline analysis of the plan library can reveal help-
ful settings for the threshold. Consider the case of
a plan that is known to have an action whose ex-
ecution is not observed ninety percent of the time.
To even consider this plan the threshold must be
set below ninety percent. This can be generalized
for sequences of unobserved actions the user is in-
terested in making sure are considered. Thus if the
user wants to be sure to consider the possibility of
a particular sequences of actions being performed
and not seen, the probability of this can be com-
puted and used to set the threshold.

3. In a similar way, sets of unobserved actions the user
would like to rule out can be used to set a lower
bound for the threshold. If for domain reasons a
particular set of actions is deemed too unlikely to
occur and not notice, the probability of this can be
computed and used to set a lower bound.

While these are only rules of thumb, using them has
proved highly effective in identifying reasonable thresh-
old values for the simulated domains on which we have
tested the system.

5 Conclusions

This paper has presented a complete, theoretically
sound, formal and tested algorithm for handling plan
recognition in partially observable domains. We have
shown, that dealing with partially observable domains
does significantly increase the runtime of the algorithm,
and for some domains, some threshold values will be
computationally prohibitive. However, our experience
suggests that for some domains this algorithm will be
a viable solution method, and that the key to this lies
in the structure of the domain and setting the threshold
for unobserved actions appropriately. Previous work on

this algorithm [Geib, 2004] suggests that the complex-
ity of the algorithm is not as tightly coupled to the size
of the state space as work on AMMs[Bui et al., 2000].
Therefore, we are continuing this work, by attempting to
specify the structure of the domains for which this rep-
resents an efficient solution method. We see this work
as an effective alternative to other approaches that may
scale in a different manner making it applicable for some
domains.
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