

Figure 1: The Cooperative Intelligent Real-Time
Control Architecture.

1995). CIRCA is designed to support both hard real-
time response guarantees and unrestricted AI methods
that can guide those real-time responses. Figure 1 il-
lustrates the architecture, in which an AI subsystem
(AIS) reasons about high-level problems that require
its powerful but potentially unbounded planning meth-
ods, while a separate real-time subsystem (RTS) reac-
tively executes the AIS-generated plans and enforces
guaranteed response times. The AIS and Scheduler
modules cooperate to develop executable reaction plans
that will assure system safety and attempt to achieve
system goals when interpreted by the RTS.

Example Domain

CIRCA has been applied to real-time planning and
control problems in several domains including mobile
robotics and simulated autonomous aircraft. In this
paper we draw examples from a domain in which
CIRCA controls a simulated Puma robot arm that
must pack parts arriving on a conveyor belt into a
nearby box. The parts can have several shapes (e.g.,
square, rectangle, triangle), each of which requires a
different packing strategy. The control system may not
initially know how to pack all of the possible types of
parts- it may have to perform some computation to
derive an appropriate box-packing strategy. The robot
arm is also responsible for reacting to an emergency
alert light. If the light goes on, the system must push
the button next to the light before a fixed deadline.

In this domain, CIRCA’s planning and execution
subsystems operate in parallel. The AIS reasons about
an internal model of the world and dynamically pro-
grams the RTS with a planned set of reactions. While
the RTS is executing those reactions, ensuring that the
system avoids failure, the AIS is able to continue exe-
cuting heuristic planning methods to find the next ap-
propriate set of reactions. For example, the AIS may
derive a new box-packing algorithm that can handle a
new type of arriving part. The derivation of this new
algorithm does not need to meet a hard deadline, be-
cause the reactions concurrently executing on the RTS
will continue handling all arriving parts, just stacking
unfamiliar ones on a nearby table temporarily. When

the new box-packing algorithm has been developed and
integrated with additional reactions that prevent fail-
ure, the new schedule of reactions can be downloaded
to the RTS.

CIRCA’s planning system builds reaction plans
based on a world model and a set of formally-defined
safety conditions that must be satisfied by feasible
plans (Musliner, Durfee, & Shin 1995). Because this
world model is the focus of the abstraction techniques
discussed in this paper, a brief review of the model
formulation is in order.

CIRCA’s World Model

The world model is a directed graph representing the
zuorst-case behavior of the environment and the actions
which the RTS can take to avoid failure. The graph
model has five elements (S, .T, T’ , TA, TT):

A finite set of “states” S = (5’1, Sa, Sm}, where
each state Si represents a description of relevant fea-
tures of the world. The features of a state are repre-
sented by the set F = { Fr , F2, FT}. Each feature
Fi E F has a finite set of possible values vaZ(F~).

A distinguished failure state .T, which subsumes all
states that violate domain-specific safety constraints.
The system strives to avoid the failure state.

A finite set of “event transitions” TE that represent
world occurrences as instantaneous state changes.

A finite set of “action transitions” TA that represent
actions performed by the RTS.

A finite set of “temporal transitions” TT that rep-
resent the progression of time and continuous pro-
cesses. We only represent the temporal transitions
that lead to significant process state changes.

of transition descriptions that implicitly define the set
To describe a domain to CIRCA, the user inputs a set

of reachable states. For example, Figure 2 illustrates
several transitions used in the Puma domain. The AIS
plans by generating a nondeterministic finite automa-
ton (NFA) f rom these transition descriptions. Begin-
ning from a set of designated start states, the AIS enu-
merates the reachable states and assigns to each state
either an action transition or no-op. Actions are se-
lected to preempt transitions that lead to failure states
and to move towards states that satisfy as many goal
propositions as possible. The assignments determine
the topology of the NFA (and so the set of reachable
states): preemption of temporal transitions removes
edges and assignment of actions adds them. System
safety is guaranteed by planning action transitions that
preempt all transitions to failure, making the failure
state unreachable (Musliner, Durfee, & Shin 1995). It

FLEXIBLE HIERARCHICAL PLANNING 681

EVENT emergency-alert

PRECONDS: ((emergency nil>>

POSTCONDS: ((emergency T))

-- Emergency light goes on , ,

TEMPORAL emergency-failure

PRECONDS: ((emergency T))

POSTCONDS: ((failure T))

MIN-DELAY: 30 [seconds]

;; Fail if don’t attend to

-- light by deadline , ,

ACTION push-emergency-button
PRECONDS: ((part-in-gripper nil))

POSTCONDS: ((emergency nil) (robot-position over-button))

WORST-CASE-EXEC-TIME: 2.0 [seconds]

Figure 2: Example transition descriptions given to CIRCA’s planner.

is this ability to build plans that guarantee the cor-
rectness and timeliness of safety-preserving reactions
that makes CIRCA suited to mission-critical applica-
tions in hard real-time domains. However, this plan-
ning algorithm can be very time-consuming because it
enumerates all reachable world states. In the following
section, we show how dynamic abstraction can make
the planning process more efficient and responsive.

Dynamic Abstraction Planning

In a state-space model like CIRCA’s, one of the most

straightforward ways of using abstraction is to simply
remove a feature from the description of the world.
This corresponds closely to the methods used in early
work on abstraction planning systems to generate ab-
stract operators by omitting less-critical elements of
operator precondition lists (cf. ABSTRIPS (Sacerdoti

1974)). ABSTRIPS planned at an abstract level that
then restricted the extent of the detailed planning re-

quired to build a final plan. The DAP technique is

significantly different in that:

The selection of which features to “abstract away”
is performed automatically during planning.
The abstractions are local, in the sense that differ-
ent parts of the state space may be abstracted to
different degrees.
The abstractions preserve guarantees of system
safety.
The planning system need not plan to the level of
fully-elaborated states to construct a feasible, exe-
cut able plan.

The DAP concept itself is simple: rather than al-
ways using all of the available features to describe world
states, we let the planner dynamically decide, for each
new world state, the level of description that is neces-
sary and desirable. By ignoring certain features, the
planner can reason about abstrcact states that corre-

SO

Emergency NIL

Sl
Emergency T

Figure 3: A partially-completed CIRCA plan.

spond to sets of “base-level” states, and thus can avoid
enumerating the individual base-level states.

Of course, during the planning process the system
might realize that an abstract state that has already
been reasoned about is not sufficiently detailed. For
example, this occurs when the state description is not
sufficiently refined to indicate whether a desirable ac-
tion can, in fact, be executed (because the state de-
scription does not specify values for all of the features
in the action’s preconditions). In such situations, the
planner must be able to dynamically increase the preci-
sion of that abstract state description by including one
or more of the omitted features. We call this process
of adding detail a “split” or “refinement .”

In the language of finite automata, DAP starts with
a very crude NFA and dynamically adds more detail.
DAP refines the NFA when it is unable to generate a
satisfactory plan’ at the current level of detail. DAP
refines the NFA by taking an existing state and split-
ting it into a number of more specific states, one for
each possible value of a particular feature, Fi.

For example, let us consider the partially-completed
plan given in Figure 3. Here there are three states: the
failure state and two non-failure states, one for each
value of emergency, a boolean proposition. This ex-
ample is based on the domain model given in Figure 2.
We assume that emergency is nil when the system
begins operation.

The NFA in Figure 3 is not safe, because there is
a reachable state, Sr, from which there is a transi-
tion to the failure state (emergency-failure) that
has not been preempted. One way to fix this problem

‘We will be m ore clear about what is “satisfactory”
below.

682 PLANNING

push-emergency-button

------------_ _.-- +- (actIon) _.
I’ ,’ G”.

DAP must construct NFAs in which there are no
chains of non-preempted, possibly-executable transi-
tions that lead to a failure states. To preempt a tem-
poral transition in a state, DAP assigns to that state
a necessarily executable action that can be executed
before the preempted transition.

We maintain NFAs that contain edges for all possibly
executable non-preempted event and temporal transi-
tions (we refer to these collectively as “non-volitional
transitions”) and for all currently-assigned actions.

Figure 4: A refinement of the NFA in Figure 3.

would be to choose an action for S1 that will preempt
emergency-failure. The domain description contains
such an action, push-emergency-button. Unfortu-
nately, one of push-emergency-button’s preconditions
is part-in-gripper= nil and Sr is not sufficiently
detailed to specify values for part-in-gripper. We
can rectify this omission by splitting 5’1 into a set of
states, one for each value of part-in-gripper. The
resulting NFA is given in Figure 4. We can now assign
push-emergency-button to solve the problem posed
by state Sr,r. Further planning is required to resolve
the problem posed by Sr,2, either by finding a preempt-
ing action that does not require part-in-gripper =
nil or by making Sr,2 unreachable.

One unusual aspect of DAP is that detail is added
to the NFA only Zoccally. In our example above, we
only added the feature part-in-gripper to the part
of the state space where the emergency feature took
on the value true, rather than refining all of the
states of the NFA symmetrically. This introduces new
nondeterminism: because we do not have a complete
model of the initial state, we cannot say whether the
emergency-alert transition will send the system to
state $,I or Sr,2.

The refinement (or splitting) operation on an NFA
JV with respect to a state Si and a feature F’
r(n/, si, Fj) = N’ is defined as follows:

s’ = {Slf(S) = f(S,) U {(&, 2)) for 2 E vaZ(F,)}

v(JV = (v(N) - S,) u s’

where S’ is the set of newly-added states. New tran-
sitions must be added into and out of the replacement
states:

e(N’) = (e(N) - { 01 + v2Iv1 = Si or 02 = S;})

U{v -$ Slv + Opre(t), S E S’, S + Ot(v)}

U{S 4 vlS E S’, S + Opre(t), v + Ot(S)}

H4AP in Practice

The prototype DAP planner takes as input a domain
model in the form of transition descriptions, a descrip-
tion of a set of initial states, and a conjunctive goal
expression. The planner returns an NFA containing
only reachable states. Each state of the NFA will be
labeled with either an action or no-op, indicating to
CIRCA how the RTS should react in that situation.

corresponds to a set of feature-value pairs; we will re-

DAP in Theory

fer to these as J’(Si). A state Si necessarily satisfies
a proposition, P (Si b UP) if P E f(Sa); it possibly

During its operation, DAP manipulates NFAs of a par-

satisfies P (Si /= OP) if + $ f(Si) (these boolean
definitions may be straightforwardly extended to non-

titular type. An NFA, N = (v(N), e(N)), will have a

boolean features).

number of states (or vertices), Si E v(N), each of which

The transitions in the NFA are generated by the
transition descriptions, which are nondeterministic
STRIPS operators. A transition t is possibly (respec-
tively, necessarily) executable in a state when the tran-
sition’s preconditions are all possibly (necessarily) sat-
isfied by that state: Si + Opre(t)(Opre(t)). With
some abuse of notation, for each transition t we define
a function t(S) from a state to a formula (in the general
case, a disjunction), describing the state(s) that result
from executing t in S.

scribed as a nondeterministic algorithm, given in Fig-
ure 5. In this presentation, choose and oneof are non-

Failure states will not be reachable in this NFA and

deterministic choice operators. An action is applicable
if the state necessarily satisfies its preconditions and if

the system will move towards states satisfying the goal

the action preempts all transitions to failure from the

expression whenever possible.

state. Note that it is not sufficient to preempt tran-
sitions directly to the distinguished failure state. For
example, if there is a state s with an event transition

The planning problem may be very concisely de-

(i.e., a transition with a zero delay) to the failure state,
then any edges into s must also be considered as tran-
sitions to failure.

In practice, we implement this algorithm through
search, with choice points corresponding to the non-
deterministic choice operators. The search fails when
it encounters a state for which there is no acceptable
action and for which there is no proposition on which

FLEXIBLE HIERARCHICAL PLANNING 683

abstract-plan (isd);
isd is initial state description

let N’ = 0; The graph
openlist = 0;
is = make-initial-state(isd);

N := N U {is};
push (is, openlist) ;
loop

if there are no more reach able states in the openlist then
we are done

break;
else

let s = choose a reachable state from openlist;
openlist := openlist - {s};
oneof

split-state :
choose a proposition p and split s into lvuZ(p)I states;
remove s from N and insert the new states;
add the new states to the open list;

assign-action :
choose an action (or no-op) that is applicable for s;

fail

Figure 5: The DAP planning algorithm.

to split. We may not be able to split the state produc-
tively even if the state is only partially specified. No
further splitting will be productive if we can determine
that some bad transition must occur in the state, that
the state is reachable, and that there are no available
actions with which to preempt the bad transition.

The structure of the NFA being constructed guides
us in backtracking. When we fail to successfully han-
dle a state, we backjump to the earliest solved state
(we keep these on a closed list) that has an edge into
the failed state. Because the state is reachable, there
must be a state with an edge into it, unless the state is
the starting state. If we fail on the starting state, the
search as a whole has failed.

Note that we do not backtrack over state refine-
ments. Backtracking over these refinements is never
necessary: for every plan that can be found at a low
level of detail, there is a corresponding plan at every
higher level. Our experience suggests that the cost of
“coarsening” an NFA (and the additional bookkeeping
necessary to provide this option) is not worth the small
savings in graph size.

Through additional backtracking, we provide a sim-
ple anytime behavior. The AIS caches plans as they are
produced (recall that all plans are safety-preserving).
Through backtracking, the AIS can generate plans that
satisfy more of the goal propositions. Thus once a first
safety-producing plan is generated, the AIS may at will
invest more time into generating better plans.

684 PLANNING

There are two aspects to the heuristic control of the
search: the search should be directed to achieve safety
and to move the system towards states that satisfy
as many goal propositions as possible. To make the
search for goal propositions most efficient, the first ac-
tion the DAP planner takes is to split the initial state
according to the goal propositions. The heuristic we
use for directing the choice of actions and refinements
is a modified version of McDermott’s heuristic estima-
tor for state-based ADL planning (McDermott 1996).
When choosing how to handle a state, the planner con-
structs an operator-proposition graph connecting the
current state description to the goal state description.
This is a layered graph, with alternating layers contain-
ing nodes that represent propositions to be achieved
and operators that can establish those propositions.
Despite using full lookahead, this approach is heuristic
and efficient because it ignores details such as interac-
tions between operators.

Our version differs from McDermott’s because our
actions are simple STRIPS operators; his approach
covers schemas as well and must consider variable bind-
ing. Another difference is that McDermott’s is a more
traditional state-space planner, so state descriptions
are complete and the only way to establish a proposi-
tion is to apply an operator with the appropriate post-
conditions. Our state descriptions are partial, and one
way for the DAP planner to establish a proposition is to
refine a partial state description to include that propo-

Figure 6: Using refinement to isolate a failure.

sition. Note that this operation is similar to the kind
of conditional planning done by CNLP (Peot & Smith
1992) and Plinth (Goldman & Boddy 1994): when the
planner cannot determine Q priori the value of a propo-
sition, it plans for both alternatives.

The planner combines information about the context
of a state with the heuristic information provided by
the operator-proposition graph. For example, when
choosing between several interesting propositions on
which to refine a state, the planner will prefer those
that are established by some transition leading into
the state.

As we mentioned earlier, the planner must concern
itself with safety as well as goal achievement. One place
where this difference becomes significant is when back-
tracking from a bad state (a state is bad if it has an
unpreemptable path to the failure state). In this case,
the planner will work to avoid the failure. There are
two ways to do this: either avoid actions that lead
to the bad state or refine the bad abstract state, to
demonstrate that the sub-states in which the bad tran-
sition(s) occur are not, in fact, reachable (for exam-
ple, see Figure 6). Safety concerns also intrude when
none of the goal-directed actions available at a state are
fast enough to preempt a transition that would lead to
failure. Safety is always the paramount consideration,
causing the planner to choose an action not preferred
by the heuristics in this case.

Implementation Status & Preliminary
Results

The prototype DAP planner is implemented and run-
ning on a selection of example domains that were used
in the original CIRCA research. The DAP planner
reasons about safety preserving goals of avoidance and
optional goals of achievement in much the same way
as the original CIRCA planner, except that it does not
yet consider the detailed temporal model necessary to
ensure failure preemption in all cases. Manual inspec-
tion of the prototype’s output plans shows that they
are very similar to the original planner’s; the new plan-
ner chooses the same actions for the same states, but
does not yet correctly derive the timing requirements
on all of those actions.

Given these limitations, comparisons between the
two planners are still only approximate. However, ini-
tial results are dramatic. Figure 7 shows several rep-
resentative cases, some with nearly an order of mag-
nitude reduction in search space using DAP. In the

Enumerated States Runtime (set)
Domain Original DAP Original DAP

Name Planner Planner Planner Planner

Figure 7: The DAP planner dramatically reduces
the search space and time.

Puma 1 domain, which is one of the largest problems
to which CIRCA has been applied, the DAP planner is
able to find significant structure in the domain that the
original CIRCA planner cannot exploit. For example,
the DAP plan is able to describe all of the conditions in
which to take the push-emergency-button action as
a disjunction of just three abstract state descriptions,
while the original CIRCA planner selects that action
for 54 different fully-described states.

The BT 6 domain is a small, hand-crafted prob-
lem designed to force the original CIRCA planner to
backtrack through several decisions, thus exercising the
backtracking and worst-case state space enumeration of
the planner. The domain has only one state feature, so
the DAP planner can find no suitable abstraction and
it makes the same backtracking moves as the original
planner, yielding the same search-space performance.
To date, this is the only domain in which the DAP tech-
nique has not yielded any performance improvement.
Other simple domains, such as the Xdemo 2 domain
(which has only 5 state features), still contain enough
hidden structure that the DAP technique is able to find
and exploit feasible abstractions.

Related Work
Many classical planning systems have used abstraction
methods to increase the efficiency of searching for plans
(see (Kambhampati 1994) for a brief survey). However,
these abstractions are typically used only as guides in
searching for a plan; the system may not know that
its goals will actually be achieved by an abstract plan,
and it will not be able to execute the abstracted opera-
tors directly. Instead, traditional abstraction planners
must eventually expand their current plans down to
the lowest level of detail, removing the abstraction to
produce a final executable plan.

In the DAP approach, which involves abstraction
only of state descriptions, abstract plans are exe-
cutable, because the operators are always completely
specified. This has two main advantages. First, the

FLEXIBLE HIERARCHICAL PLANNING 685

planning process can supply initial plans that preserve
safety but might, on further refinement, do a better job
of goal achievement. Second, the planning process can
terminate with an executable abstract plan, which our
results have shown may be much smaller than the cor-
responding plan expanded to precisely-defined states.

Dearden and Boutilier (1997) have developed an ab-
stract planning algorithm for decision-theoretic plan-
ning modeled as a Markov decision process (MDP).
Their method is similar to the DAP approach in that
it involves aggregating states, but there are some dif-
ferences. First, their method is not dynamic: aggrega-
tion is performed using a predefined set of “relevant”
propositions, which is determined using Knoblock’s ap-
proach (Knoblock 1994). S econd, their method is uni-
form: the same propositions are relevant everywhere.
The underlying model is also significantly different
from CIRCA’s: it does not model exogenous events
or the timing required for real-time guarantees.

Kabanza et al. (Kabanza, Barbeau, & St-Denis 1997)
have developed a planning method for reactive agents
that is similar to the original CIRCA. Their architec-
ture differs in emphasis, however. The NFAs it con-
structs are “clocked:” they make transitions at times
that are the least common denominator of all possible
transitions. This scheme will suffer a state space explo-
sion in domains where there is a wide range of possible
transition delays, like those to which CIRCA has been
applied. Kabanza’s group has concentrated on develop-
ing a more flexible notation for goals than those used
by CIRCA, but they do not make the same distinc-
tion between safety and goal achievement. In previ-
ous work, Godefroid and Kabanza (Godefroid & Ka-
banza 1991) developed an abstraction technique based
on partial orders. Their results allow a system to ex-
amine only a single ordering of independent actions,
rather than enumerating all possible orderings. Unfor-
tunately, these results are not immediately applicable
to CIRCA, because their world model does not include
exogenous events. The more recent work by Kabanza
et al. (Kabanza, Barbeau, & St-Denis 1997) does in-
clude exogenous events, but they do not seem to have
carried over the earlier abstraction concepts.

Future Directions

In this paper, we have presented Dynamic Abstraction
Planning (DAP) , an abstraction technique that we use
to generate real-time control plans in the CIRCA sys-
tem. This abstraction technique is significantly dif-
ferent from others in preserving safety guarantees and
in performing abstraction locally and dynamically. In
our experience, by automatically selecting the appro-
priate level of abstraction at each step during the plan-
ning process, DAP significantly reduces the size of the

search space.
The main next step in developing the DAP method-

ology is to fully integrate the detailed temporal reason-
ing that the current prototype omits. This will bring
the new planner onto equal footing with the original
CIRCA planner, and will allow more accurate compar-
isons of the efficiency improvements gained by using
the dynamic abstraction method.

Acknowledgments This work was supported by the
Defense Advanced Research Projects Agency under
contract DAAK60-94-C-0040-POO06. We thank the re-
viewers for their helpful comments.

References

Dearden, R., and Boutilier, C. 1997. Abstraction
and approximate decision-theoretic planning. Artifi-
cial Intelligence 89(l-2):219-283.

Godefroid, P., and Kabanza, F. 1991. An efficient
reactive planner for synthesizing reactive plans. In
Proc. Nat’1 Conf. on Artificial Intelligence, 640-645.

Goldman, R. P., and Boddy, M. S. 1994. Conditional
linear planning. In Proc. Second Int’Z Conf. on Arti-
ficial Intelligence Planning Systems, 80-85.

Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997.
Planning control rules for reactive agents. Technical
Report 197, Comp. Sci. Dept., Univ. of Sherbrooke.

Kambhampati, S. 1994. Refinement search as a unify-
ing framework for analyzing planning algorithms. In
Proc. Fourth Int ‘1 Conf. on Principles of Knowledge
Representation and Reasoning.

Knoblock, C. A. 1994. Automatically generating ab-
stractions for planning. Artificial Intelligence 68:243-

302.

McDermott, D. 1996. A heuristic estimator for means-
ends analysis in planning. In Proc. Third Int ‘I Conf.

on Artificial Intelligence Planning Systems, 142-149.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control ar-
chitecture. IEEE Trans. Systems, Man, and Cyber-
netics 23(6):1561-1574.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1995.
World modeling for the dynamic construction of real-
time control plans. Artificial Intelligence 74(1):83-

127.

Peot, M. A., and Smith, D. E. 1992. Conditional non-
linear planning. In Proc. First Int’Z Conf. on Artificial
Intelligence Planning Systems, 189-197.

Sacerdoti, E. D. 1974. Planning in a hierarchy of
abstraction spaces. Artificial Intelligence 5(2):115-

135.

686 PLANNING

