


Figure 1: The Cooperative Intelligent Real-Time 
Control Architecture. 

1995). CIRCA is designed to support both hard real- 
time response guarantees and unrestricted AI methods 
that can guide those real-time responses. Figure 1 il- 
lustrates the architecture, in which an AI subsystem 
(AIS) reasons about high-level problems that require 
its powerful but potentially unbounded planning meth- 
ods, while a separate real-time subsystem (RTS) reac- 
tively executes the AIS-generated plans and enforces 
guaranteed response times. The AIS and Scheduler 
modules cooperate to develop executable reaction plans 
that will assure system safety and attempt to achieve 
system goals when interpreted by the RTS. 

Example Domain 

CIRCA has been applied to real-time planning and 
control problems in several domains including mobile 
robotics and simulated autonomous aircraft. In this 
paper we draw examples from a domain in which 
CIRCA controls a simulated Puma robot arm that 
must pack parts arriving on a conveyor belt into a 
nearby box. The parts can have several shapes (e.g., 
square, rectangle, triangle), each of which requires a 
different packing strategy. The control system may not 
initially know how to pack all of the possible types of 
parts- it may have to perform some computation to 
derive an appropriate box-packing strategy. The robot 
arm is also responsible for reacting to an emergency 
alert light. If the light goes on, the system must push 
the button next to the light before a fixed deadline. 

In this domain, CIRCA’s planning and execution 
subsystems operate in parallel. The AIS reasons about 
an internal model of the world and dynamically pro- 
grams the RTS with a planned set of reactions. While 
the RTS is executing those reactions, ensuring that the 
system avoids failure, the AIS is able to continue exe- 
cuting heuristic planning methods to find the next ap- 
propriate set of reactions. For example, the AIS may 
derive a new box-packing algorithm that can handle a 
new type of arriving part. The derivation of this new 
algorithm does not need to meet a hard deadline, be- 
cause the reactions concurrently executing on the RTS 
will continue handling all arriving parts, just stacking 
unfamiliar ones on a nearby table temporarily. When 

the new box-packing algorithm has been developed and 
integrated with additional reactions that prevent fail- 
ure, the new schedule of reactions can be downloaded 
to the RTS. 

CIRCA’s planning system builds reaction plans 
based on a world model and a set of formally-defined 
safety conditions that must be satisfied by feasible 
plans (Musliner, Durfee, & Shin 1995). Because this 
world model is the focus of the abstraction techniques 
discussed in this paper, a brief review of the model 
formulation is in order. 

CIRCA’s World Model 

The world model is a directed graph representing the 
zuorst-case behavior of the environment and the actions 
which the RTS can take to avoid failure. The graph 
model has five elements (S, .T, T’ , TA, TT): 

A finite set of “states” S = (5’1, Sa, . . . . Sm}, where 
each state Si represents a description of relevant fea- 
tures of the world. The features of a state are repre- 
sented by the set F = { Fr , F2, . . . . FT}. Each feature 
Fi E F has a finite set of possible values vaZ(F~). 

A distinguished failure state .T, which subsumes all 
states that violate domain-specific safety constraints. 
The system strives to avoid the failure state. 

A finite set of “event transitions” TE that represent 
world occurrences as instantaneous state changes. 

A finite set of “action transitions” TA that represent 
actions performed by the RTS. 

A finite set of “temporal transitions” TT that rep- 
resent the progression of time and continuous pro- 
cesses. We only represent the temporal transitions 
that lead to significant process state changes. 

of transition descriptions that implicitly define the set 
To describe a domain to CIRCA, the user inputs a set 

of reachable states. For example, Figure 2 illustrates 
several transitions used in the Puma domain. The AIS 
plans by generating a nondeterministic finite automa- 
ton (NFA) f rom these transition descriptions. Begin- 
ning from a set of designated start states, the AIS enu- 
merates the reachable states and assigns to each state 
either an action transition or no-op. Actions are se- 
lected to preempt transitions that lead to failure states 
and to move towards states that satisfy as many goal 
propositions as possible. The assignments determine 
the topology of the NFA (and so the set of reachable 
states): preemption of temporal transitions removes 
edges and assignment of actions adds them. System 
safety is guaranteed by planning action transitions that 
preempt all transitions to failure, making the failure 
state unreachable (Musliner, Durfee, & Shin 1995). It 
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EVENT emergency-alert 

PRECONDS: ((emergency nil>> 

POSTCONDS: ((emergency T)) 

-- Emergency light goes on , , 

TEMPORAL emergency-failure 

PRECONDS: ((emergency T)) 

POSTCONDS: ((failure T)) 

MIN-DELAY: 30 [seconds] 

;; Fail if don’t attend to 

-- light by deadline , , 

ACTION push-emergency-button 
PRECONDS: ((part-in-gripper nil)) 

POSTCONDS: ((emergency nil) (robot-position over-button)) 

WORST-CASE-EXEC-TIME: 2.0 [seconds] 

Figure 2: Example transition descriptions given to CIRCA’s planner. 

is this ability to build plans that guarantee the cor- 
rectness and timeliness of safety-preserving reactions 
that makes CIRCA suited to mission-critical applica- 
tions in hard real-time domains. However, this plan- 
ning algorithm can be very time-consuming because it 
enumerates all reachable world states. In the following 
section, we show how dynamic abstraction can make 
the planning process more efficient and responsive. 

Dynamic Abstraction Planning 

In a state-space model like CIRCA’s, one of the most 

straightforward ways of using abstraction is to simply 
remove a feature from the description of the world. 
This corresponds closely to the methods used in early 
work on abstraction planning systems to generate ab- 
stract operators by omitting less-critical elements of 
operator precondition lists (cf. ABSTRIPS (Sacerdoti 

1974)). ABSTRIPS planned at an abstract level that 
then restricted the extent of the detailed planning re- 

quired to build a final plan. The DAP technique is 

significantly different in that: 

The selection of which features to “abstract away” 
is performed automatically during planning. 
The abstractions are local, in the sense that differ- 
ent parts of the state space may be abstracted to 
different degrees. 
The abstractions preserve guarantees of system 
safety. 
The planning system need not plan to the level of 
fully-elaborated states to construct a feasible, exe- 
cut able plan. 

The DAP concept itself is simple: rather than al- 
ways using all of the available features to describe world 
states, we let the planner dynamically decide, for each 
new world state, the level of description that is neces- 
sary and desirable. By ignoring certain features, the 
planner can reason about abstrcact states that corre- 

SO 

Emergency NIL 

Sl 
Emergency T 

Figure 3: A partially-completed CIRCA plan. 

spond to sets of “base-level” states, and thus can avoid 
enumerating the individual base-level states. 

Of course, during the planning process the system 
might realize that an abstract state that has already 
been reasoned about is not sufficiently detailed. For 
example, this occurs when the state description is not 
sufficiently refined to indicate whether a desirable ac- 
tion can, in fact, be executed (because the state de- 
scription does not specify values for all of the features 
in the action’s preconditions). In such situations, the 
planner must be able to dynamically increase the preci- 
sion of that abstract state description by including one 
or more of the omitted features. We call this process 
of adding detail a “split” or “refinement .” 

In the language of finite automata, DAP starts with 
a very crude NFA and dynamically adds more detail. 
DAP refines the NFA when it is unable to generate a 
satisfactory plan’ at the current level of detail. DAP 
refines the NFA by taking an existing state and split- 
ting it into a number of more specific states, one for 
each possible value of a particular feature, Fi. 

For example, let us consider the partially-completed 
plan given in Figure 3. Here there are three states: the 
failure state and two non-failure states, one for each 
value of emergency, a boolean proposition. This ex- 
ample is based on the domain model given in Figure 2. 
We assume that emergency is nil when the system 
begins operation. 

The NFA in Figure 3 is not safe, because there is 
a reachable state, Sr, from which there is a transi- 
tion to the failure state (emergency-failure) that 
has not been preempted. One way to fix this problem 

‘We will be m ore clear about what is “satisfactory” 
below. 
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push-emergency-button 

------------_ _.-- +- (actIon) _. 
I’ ,’ G”. 

DAP must construct NFAs in which there are no 
chains of non-preempted, possibly-executable transi- 
tions that lead to a failure states. To preempt a tem- 
poral transition in a state, DAP assigns to that state 
a necessarily executable action that can be executed 
before the preempted transition. 

We maintain NFAs that contain edges for all possibly 
executable non-preempted event and temporal transi- 
tions (we refer to these collectively as “non-volitional 
transitions”) and for all currently-assigned actions. 

Figure 4: A refinement of the NFA in Figure 3. 

would be to choose an action for S1 that will preempt 
emergency-failure. The domain description contains 
such an action, push-emergency-button. Unfortu- 
nately, one of push-emergency-button’s preconditions 
is part-in-gripper= nil and Sr is not sufficiently 
detailed to specify values for part-in-gripper. We 
can rectify this omission by splitting 5’1 into a set of 
states, one for each value of part-in-gripper. The 
resulting NFA is given in Figure 4. We can now assign 
push-emergency-button to solve the problem posed 
by state Sr,r. Further planning is required to resolve 
the problem posed by Sr,2, either by finding a preempt- 
ing action that does not require part-in-gripper = 
nil or by making Sr,2 unreachable. 

One unusual aspect of DAP is that detail is added 
to the NFA only Zoccally. In our example above, we 
only added the feature part-in-gripper to the part 
of the state space where the emergency feature took 
on the value true, rather than refining all of the 
states of the NFA symmetrically. This introduces new 
nondeterminism: because we do not have a complete 
model of the initial state, we cannot say whether the 
emergency-alert transition will send the system to 
state $,I or Sr,2. 

The refinement (or splitting) operation on an NFA 
JV with respect to a state Si and a feature F’ 
r(n/, si, Fj) = N’ is defined as follows: 

s’ = {Slf(S) = f(S,) U {(&, 2)) for 2 E vaZ(F,)} 

v(JV = (v(N) - S,) u s’ 

where S’ is the set of newly-added states. New tran- 
sitions must be added into and out of the replacement 
states: 

e(N’) = (e(N) - { 01 + v2Iv1 = Si or 02 = S;}) 

U{v -$ Slv + Opre(t), S E S’, S + Ot(v)} 

U{S 4 vlS E S’, S + Opre(t), v + Ot(S)} 

H4AP in Practice 

The prototype DAP planner takes as input a domain 
model in the form of transition descriptions, a descrip- 
tion of a set of initial states, and a conjunctive goal 
expression. The planner returns an NFA containing 
only reachable states. Each state of the NFA will be 
labeled with either an action or no-op, indicating to 
CIRCA how the RTS should react in that situation. 

corresponds to a set of feature-value pairs; we will re- 

DAP in Theory 

fer to these as J’(Si). A state Si necessarily satisfies 
a proposition, P (Si b UP) if P E f(Sa); it possibly 

During its operation, DAP manipulates NFAs of a par- 

satisfies P (Si /= OP) if + $ f(Si) (these boolean 
definitions may be straightforwardly extended to non- 

titular type. An NFA, N = (v(N), e(N)), will have a 

boolean features). 

number of states (or vertices), Si E v(N), each of which 

The transitions in the NFA are generated by the 
transition descriptions, which are nondeterministic 
STRIPS operators. A transition t is possibly (respec- 
tively, necessarily) executable in a state when the tran- 
sition’s preconditions are all possibly (necessarily) sat- 
isfied by that state: Si + Opre(t)(Opre(t)). With 
some abuse of notation, for each transition t we define 
a function t(S) from a state to a formula (in the general 
case, a disjunction), describing the state(s) that result 
from executing t in S. 

scribed as a nondeterministic algorithm, given in Fig- 
ure 5. In this presentation, choose and oneof are non- 

Failure states will not be reachable in this NFA and 

deterministic choice operators. An action is applicable 
if the state necessarily satisfies its preconditions and if 

the system will move towards states satisfying the goal 

the action preempts all transitions to failure from the 

expression whenever possible. 

state. Note that it is not sufficient to preempt tran- 
sitions directly to the distinguished failure state. For 
example, if there is a state s with an event transition 

The planning problem may be very concisely de- 

(i.e., a transition with a zero delay) to the failure state, 
then any edges into s must also be considered as tran- 
sitions to failure. 

In practice, we implement this algorithm through 
search, with choice points corresponding to the non- 
deterministic choice operators. The search fails when 
it encounters a state for which there is no acceptable 
action and for which there is no proposition on which 
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abstract-plan (isd); 
isd is initial state description 

let N’ = 0; The graph 
openlist = 0; 
is = make-initial-state(isd); 

N := N U {is}; 
push (is, openlist) ; 
loop 

if there are no more reach able states in the openlist then 
we are done 

break; 
else 

let s = choose a reachable state from openlist; 
openlist := openlist - {s}; 
oneof 

split-state : 
choose a proposition p and split s into lvuZ(p)I states; 
remove s from N and insert the new states; 
add the new states to the open list; 

assign-action : 
choose an action (or no-op) that is applicable for s; 

fail 

Figure 5: The DAP planning algorithm. 

to split. We may not be able to split the state produc- 
tively even if the state is only partially specified. No 
further splitting will be productive if we can determine 
that some bad transition must occur in the state, that 
the state is reachable, and that there are no available 
actions with which to preempt the bad transition. 

The structure of the NFA being constructed guides 
us in backtracking. When we fail to successfully han- 
dle a state, we backjump to the earliest solved state 
(we keep these on a closed list) that has an edge into 
the failed state. Because the state is reachable, there 
must be a state with an edge into it, unless the state is 
the starting state. If we fail on the starting state, the 
search as a whole has failed. 

Note that we do not backtrack over state refine- 
ments. Backtracking over these refinements is never 
necessary: for every plan that can be found at a low 
level of detail, there is a corresponding plan at every 
higher level. Our experience suggests that the cost of 
“coarsening” an NFA (and the additional bookkeeping 
necessary to provide this option) is not worth the small 
savings in graph size. 

Through additional backtracking, we provide a sim- 
ple anytime behavior. The AIS caches plans as they are 
produced (recall that all plans are safety-preserving). 
Through backtracking, the AIS can generate plans that 
satisfy more of the goal propositions. Thus once a first 
safety-producing plan is generated, the AIS may at will 
invest more time into generating better plans. 
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There are two aspects to the heuristic control of the 
search: the search should be directed to achieve safety 
and to move the system towards states that satisfy 
as many goal propositions as possible. To make the 
search for goal propositions most efficient, the first ac- 
tion the DAP planner takes is to split the initial state 
according to the goal propositions. The heuristic we 
use for directing the choice of actions and refinements 
is a modified version of McDermott’s heuristic estima- 
tor for state-based ADL planning (McDermott 1996). 
When choosing how to handle a state, the planner con- 
structs an operator-proposition graph connecting the 
current state description to the goal state description. 
This is a layered graph, with alternating layers contain- 
ing nodes that represent propositions to be achieved 
and operators that can establish those propositions. 
Despite using full lookahead, this approach is heuristic 
and efficient because it ignores details such as interac- 
tions between operators. 

Our version differs from McDermott’s because our 
actions are simple STRIPS operators; his approach 
covers schemas as well and must consider variable bind- 
ing. Another difference is that McDermott’s is a more 
traditional state-space planner, so state descriptions 
are complete and the only way to establish a proposi- 
tion is to apply an operator with the appropriate post- 
conditions. Our state descriptions are partial, and one 
way for the DAP planner to establish a proposition is to 
refine a partial state description to include that propo- 



Figure 6: Using refinement to isolate a failure. 

sition. Note that this operation is similar to the kind 
of conditional planning done by CNLP (Peot & Smith 
1992) and Plinth (Goldman & Boddy 1994): when the 
planner cannot determine Q priori the value of a propo- 
sition, it plans for both alternatives. 

The planner combines information about the context 
of a state with the heuristic information provided by 
the operator-proposition graph. For example, when 
choosing between several interesting propositions on 
which to refine a state, the planner will prefer those 
that are established by some transition leading into 
the state. 

As we mentioned earlier, the planner must concern 
itself with safety as well as goal achievement. One place 
where this difference becomes significant is when back- 
tracking from a bad state (a state is bad if it has an 
unpreemptable path to the failure state). In this case, 
the planner will work to avoid the failure. There are 
two ways to do this: either avoid actions that lead 
to the bad state or refine the bad abstract state, to 
demonstrate that the sub-states in which the bad tran- 
sition(s) occur are not, in fact, reachable (for exam- 
ple, see Figure 6). Safety concerns also intrude when 
none of the goal-directed actions available at a state are 
fast enough to preempt a transition that would lead to 
failure. Safety is always the paramount consideration, 
causing the planner to choose an action not preferred 
by the heuristics in this case. 

Implementation Status & Preliminary 
Results 

The prototype DAP planner is implemented and run- 
ning on a selection of example domains that were used 
in the original CIRCA research. The DAP planner 
reasons about safety preserving goals of avoidance and 
optional goals of achievement in much the same way 
as the original CIRCA planner, except that it does not 
yet consider the detailed temporal model necessary to 
ensure failure preemption in all cases. Manual inspec- 
tion of the prototype’s output plans shows that they 
are very similar to the original planner’s; the new plan- 
ner chooses the same actions for the same states, but 
does not yet correctly derive the timing requirements 
on all of those actions. 

Given these limitations, comparisons between the 
two planners are still only approximate. However, ini- 
tial results are dramatic. Figure 7 shows several rep- 
resentative cases, some with nearly an order of mag- 
nitude reduction in search space using DAP. In the 

Enumerated States Runtime (set) 
Domain Original DAP Original DAP 

Name Planner Planner Planner Planner 

Figure 7: The DAP planner dramatically reduces 
the search space and time. 

Puma 1 domain, which is one of the largest problems 
to which CIRCA has been applied, the DAP planner is 
able to find significant structure in the domain that the 
original CIRCA planner cannot exploit. For example, 
the DAP plan is able to describe all of the conditions in 
which to take the push-emergency-button action as 
a disjunction of just three abstract state descriptions, 
while the original CIRCA planner selects that action 
for 54 different fully-described states. 

The BT 6 domain is a small, hand-crafted prob- 
lem designed to force the original CIRCA planner to 
backtrack through several decisions, thus exercising the 
backtracking and worst-case state space enumeration of 
the planner. The domain has only one state feature, so 
the DAP planner can find no suitable abstraction and 
it makes the same backtracking moves as the original 
planner, yielding the same search-space performance. 
To date, this is the only domain in which the DAP tech- 
nique has not yielded any performance improvement. 
Other simple domains, such as the Xdemo 2 domain 
(which has only 5 state features), still contain enough 
hidden structure that the DAP technique is able to find 
and exploit feasible abstractions. 

Related Work 
Many classical planning systems have used abstraction 
methods to increase the efficiency of searching for plans 
(see (Kambhampati 1994) for a brief survey). However, 
these abstractions are typically used only as guides in 
searching for a plan; the system may not know that 
its goals will actually be achieved by an abstract plan, 
and it will not be able to execute the abstracted opera- 
tors directly. Instead, traditional abstraction planners 
must eventually expand their current plans down to 
the lowest level of detail, removing the abstraction to 
produce a final executable plan. 

In the DAP approach, which involves abstraction 
only of state descriptions, abstract plans are exe- 
cutable, because the operators are always completely 
specified. This has two main advantages. First, the 
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planning process can supply initial plans that preserve 
safety but might, on further refinement, do a better job 
of goal achievement. Second, the planning process can 
terminate with an executable abstract plan, which our 
results have shown may be much smaller than the cor- 
responding plan expanded to precisely-defined states. 

Dearden and Boutilier (1997) have developed an ab- 
stract planning algorithm for decision-theoretic plan- 
ning modeled as a Markov decision process (MDP). 
Their method is similar to the DAP approach in that 
it involves aggregating states, but there are some dif- 
ferences. First, their method is not dynamic: aggrega- 
tion is performed using a predefined set of “relevant” 
propositions, which is determined using Knoblock’s ap- 
proach (Knoblock 1994). S econd, their method is uni- 
form: the same propositions are relevant everywhere. 
The underlying model is also significantly different 
from CIRCA’s: it does not model exogenous events 
or the timing required for real-time guarantees. 

Kabanza et al. (Kabanza, Barbeau, & St-Denis 1997) 
have developed a planning method for reactive agents 
that is similar to the original CIRCA. Their architec- 
ture differs in emphasis, however. The NFAs it con- 
structs are “clocked:” they make transitions at times 
that are the least common denominator of all possible 
transitions. This scheme will suffer a state space explo- 
sion in domains where there is a wide range of possible 
transition delays, like those to which CIRCA has been 
applied. Kabanza’s group has concentrated on develop- 
ing a more flexible notation for goals than those used 
by CIRCA, but they do not make the same distinc- 
tion between safety and goal achievement. In previ- 
ous work, Godefroid and Kabanza (Godefroid & Ka- 
banza 1991) developed an abstraction technique based 
on partial orders. Their results allow a system to ex- 
amine only a single ordering of independent actions, 
rather than enumerating all possible orderings. Unfor- 
tunately, these results are not immediately applicable 
to CIRCA, because their world model does not include 
exogenous events. The more recent work by Kabanza 
et al. (Kabanza, Barbeau, & St-Denis 1997) does in- 
clude exogenous events, but they do not seem to have 
carried over the earlier abstraction concepts. 

Future Directions 

In this paper, we have presented Dynamic Abstraction 
Planning (DAP) , an abstraction technique that we use 
to generate real-time control plans in the CIRCA sys- 
tem. This abstraction technique is significantly dif- 
ferent from others in preserving safety guarantees and 
in performing abstraction locally and dynamically. In 
our experience, by automatically selecting the appro- 
priate level of abstraction at each step during the plan- 
ning process, DAP significantly reduces the size of the 

search space. 
The main next step in developing the DAP method- 

ology is to fully integrate the detailed temporal reason- 
ing that the current prototype omits. This will bring 
the new planner onto equal footing with the original 
CIRCA planner, and will allow more accurate compar- 
isons of the efficiency improvements gained by using 
the dynamic abstraction method. 
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