

Scheduler

selected reaction
reactions schedules

Environment

control | | sensor data
signals

N reaction schedules

Al Subsystem J

World Model

LReal—Time Subsystem

feedback data

Figure 1: The Cooperative Intelligent Real-Time
Control Architecture.

1995). CIRCA is designed to support both hard real-
time response guarantees and unrestricted AI methods
that can guide those real-time responses. Figure 1 il-
lustrates the architecture, in which an AI subsystem
(AIS) reasons about high-level problems that require
its powerful but potentially unbounded planning meth-
ods, while a separate real-time subsystem (RTS) reac-
tively executes the AIS-generated plans and enforces
guaranteed response times. The AIS and Scheduler
modules cooperate to develop executable reaction plans
that will assure system safety and attempt to achieve
system goals when interpreted by the RTS.

Example Domain

CIRCA has been applied to real-time planning and
control problems in several domains including mobile
robotics and simulated autonomous aircraft. In this
paper we draw examples from a domain in which
CIRCA controls a simulated Puma robot arm that
must pack parts arriving on a conveyor belt into a
nearby box. The parts can have several shapes (e.g.,
square, rectangle, triangle), each of which requires a
different packing strategy. The control system may not
initially know how to pack all of the possible types of
parts— it may have to perform some computation to
derive an appropriate box-packing strategy. The robot
arm is also responsible for reacting to an emergency
alert light. If the light goes on, the system must push
the button next to the light before a fixed deadline.
In this domain, CIRCA’s planning and execution
subsystems operate in parallel. The AIS reasons about
an internal model of the world and dynamically pro-
grams the RTS with a planned set of reactions. While
the RTS is executing those reactions, ensuring that the
system avoids failure, the AIS is able to continue exe-
cuting heuristic planning methods to find the next ap-
propriate set of reactions. For example, the AIS may
derive a new box-packing algorithm that can handle a
new type of arriving part. The derivation of this new
algorithm does not need to meet a hard deadline, be-
cause the reactions concurrently executing on the RTS
will continue handling all arriving parts, just stacking
unfamiliar ones on a nearby table temporarily. When

the new box-packing algorithm has been developed and
integrated with additional reactions that prevent fail-
ure, the new schedule of reactions can be downloaded
to the RTS.

CIRCA’s planning system builds reaction plans
based on a world model and a set of formally-defined
safety conditions that must be satisfied by feasible
plans (Musliner, Durfee, & Shin 1995). Because this
world model is the focus of the abstraction techniques
discussed in this paper, a brief review of the model
formulation is in order.

CIRCA’s World Model

The world model is a directed graph representing the
worst-case behavior of the environment and the actions
which the RTS can take to avoid failure. The graph
model has five elements (S, F,Tg,Ta, Tr):

1. A finite set of “states” S = {S51,Sa, ..., Sm}, where
each state S; represents a description of relevant fea-
tures of the world. The features of a state are repre-
sented by the set F' = {F}, F, ..., F,.}. Each feature
F; € F has a finite set of possible values val(F;).

2. A distinguished failure state F, which subsumes all
states that violate domain-specific safety constraints.
The system strives to avoid the failure state.

3. A finite set of “event transitions” Tg that represent
world occurrences as instantaneous state changes.

4. A finite set of “action transitions” T4 that represent
actions performed by the RTS.

5. A finite set of “temporal transitions” Tp that rep-
resent the progression of time and continuous pro-
cesses. We only represent the temporal transitions
that lead to significant process state changes.

To describe a domain to CIRCA, the user inputs a set
of transition descriptions that implicitly define the set
of reachable states. For example, Figure 2 illustrates
several transitions used in the Puma domain. The AIS
plans by generating a nondeterministic finite automa-
ton (NFA) from these transition descriptions. Begin-
ning from a set of designated start states, the AIS enu-
merates the reachable states and assigns to each state
either an action transition or no-op. Actions are se-
lected to preempt transitions that lead to failure states
and to move towards states that satisfy as many goal
propositions as possible. The assignments determine
the topology of the NFA (and so the set of reachable
states): preemption of temporal transitions removes
edges and assignment of actions adds them. System
safety is guaranteed by planning action transitions that
preempt all transitions to failure, making the failure
state unreachable (Musliner, Durfee, & Shin 1995). It

FLEXIBLE HIERARCHICAL PLANNING 681

EVENT emergency-alert

BRTAANNG . [amareaneca na 1))
FREOVUNDS \\elleLgenb_y L1l)})
POSTCONDS : ((nmn'rcrnn cvy T))
PUSTCUNDS emergency 1))

TEMPORAL emergency-failure
PRECONDS: ((emergency T))
POSTCONDS: ((failure T))

TAT_TTT A, an o

MIN-DELAY: 30 Lbeb()uub_l

ACTION push-emergency-button
PRECONDS: ((part-in-gripper nil))

H

e we

Emergency light goes on

Fail if don’t attend to
light by deadline

POSTCONDS: ((emergency nil) (robot-position over-button))

WORST-CASE-EXEC-TIME: 2.0 [seconds]

Figure 2: Example transition descriptions given to CIRCA’s planner.

T ss and timeliness of safety-
that makes CIRCA suited to mlssmn—crlt]cal applica-
tions in hard real-time domains. However, this plan-
ning algorithm can be very time-consuming because it

enumerates all reachable World states. ln the Iollowmg

Dynamic Abstraction Planning
In a state-space model like CIRCA’s, one of the most

stralghtforward Ways of using abstraction is to simply
remove a feature from the description of the world.
This corresponds closely to the methods used in early

work on abstraction planning systems to generate ab-
stract operators by omitting less-critical “elements of
operator precondition lists (cf ABSTRIPS (Sacerdoti

ﬂv—r\“'r“

TRIPS planned at an abstract level that
the extent of the detailed planning re-

o oy
vil€ CXbulilv oilC UCualiCG pidiliiiiig 1C

a final plan. The DAP technique is

en re: tod
AT LU LA
1

quired to build
significantly different in that:

3 s «© »
& The selection of which features to “abstract away
is performed automatically during planning.

e The abstractions are local, in the sense that differ-
ent parts of the state space may be abstracted to
different degrees.

o The abstractions preserve guarantees o

gafetv

SaiCvy.

e The planning system need not plan to the level of
fully-elaborated states to construct a feasible, exe-
cutable plan.

The DAP concept itself is simple: rather than al-
ways using all of the available features to describe world
states, we let the planner dynamically decide, for each
new world state, the level of description that is neces-
the

Khle Bv ignoring certal features
. the

1C. Dy 1500NIE cervaln icajures,

planner can reason about abstract states that corre-

682 PLANNING

So Sy F

! (Cranure)

emer; y-alert 2 emergency-fail
Emergency NIL Emergency T
(event) (temporal)

Figure 3: A partially-completed CIRCA plan.

spond to sets of “base-level” states, and thus can avoid
enumerating the md1v1dual base—level states.

[Sxlie]
W
.,
=2
W
n
W
=3
]
3
Y]
l.
<

For
example, this occurs when the state descrlptlon is not
sufficiently refined to indicate whether a desirable ac-
tion can, in fact, be executed (because the state de-

crintion does not specify values for all of the features
Cription GOes nNoy SPeCliy Vvaiues iOr ai: Cr g ieatures

the action’s preconditions). In such situations, the
planner must be able to dynamically increase the preci-
sion of that abstract state description by including one
or more of the omitted features. We call this process

A A A e Aatozl o Can 1147 e Ko B A and P
1 atiul 15 ucuvall a Dyllb oL 1CILL 11C11L.
In the lang_lag of finite automata, DAP starts wi'rh

DAP reﬁnes the NFA when it is unable to generate a
satisfactory plan! at the current level of detail. DAP
refines the NFA by taking an existing state and split-

tine 1t into o

ting it into a one for

number of more snecific st
c s one ior

o ateog
numoer O1 more speciin &

vilS,

each possible value of a particular feature, F;.
For example, let us consider the partially-completed
plan given in Figure 3. Here there are three states: the

failure state and two non-failure states, one for each
-~ L

vaiul 1 emergency, a boolean PIropo This ex-
ample is based on the domain model given in Figure 2
We assume that emergency is nil when the system

begins operation.

The NFA in Flgure 3 is not safe, because there is
t which there is a transi-
ilur \ that

LU

push-emergency-button

So -
0 4

F
emer| alert Emergency T emeryency?fai
(Emergency NIL . Part-in-gripper NIL ﬁdv:*’(FAILURE }
. N

PPer

\ 51’2
(o
Emergency T
\[Part'invgripper TJ/

Figure 4: A refinement of the NFA in Figure 3.

preempted

emergency-failure

would be to choose an action for S; that will preempt
emergency-failure. The domain description contains
IInfartn-

siich actio push-emersency-button
vniortu

such an action, push-emergency-button.
nately, one of push-emergency-button’s preconditions
is part-in-gripper= nil and S; is not sufficiently
detailed to specify values for part-in-gripper. We
can rectify this omission by splitting S; into a set of

, -~ - - N P S 3
stales, one for each value of part-in-gripper. The
I'esul"'ih(f]-1‘ ';Q ao1Iven 1n F‘;f‘l“l"ﬁ A A[Q can now QCQiﬂ'Y\

Iting NFA 1s given in Figure 4. We can now assign

push~emergency-button to solve the problem posed
by state Si,1. Further planning is required to resolve
the problem posed by Sj 2, either by finding a preempt-

ing action that does not requlre part in-gripper =
nil or by making S) » unreachable.
One unusual aspect of DAP is that detail is added

only added the feature part—1n—gr1pper to the part
of the state space where the emergency feature took
on the value true, rather than refining all of the
states of the NFA symmetrically. This i new

states of the NFA symmetrically. This introduces new
nondeterminism: because we do not have a complete
model of the initial state, we cannot say whether the
emergency—-alert transition will send the system to
state 513 or Sp2.

DAP in Theory

During its operation, DAP manipulates NFAs of a par-
ticular type. An NFA, V' = (v(N), e(N)), will have a

number of states (or vertices), S; € v(fV'), each of which
~L

2

re-value pairs; we will re-
e S nprpecnrv/q: satisfies
if P € f(S:); it possibly
satisfies P (S’ = <>P) if =P ¢ f(S;) (these boolean
definitions may be straightforwardly extended to non-

the
transition descriptions, which are nondeterministic
STRIPS operators. A transition ¢ is possibly (respec-
tively, necessarily) executable in a state when the tran-
sition’s preconditions are all p0551bly (necessarlly) sat-

-
n
[

c

-

IS

=

e

=
C
[}
i
=}
o
-

~ 11 11 P 4 p] o 1 £\ XXriil
isfied by that state: S; | Opre{t)(Opre(t)). With
some abuse of notation, for each transition ¢ we define

()q
:3
193
]
o
=

afunction ¢(S) from a state to a formula (in the

case, a disjunction), describing the state(s) that result
from executing ¢ in S.

DAP must construct NFAs in which there are no
chains of non-preempted, possibly-executable transi-
tions that lead to a failure states. To preempt a tem-
| transition in a state, DAP assigns to that state
a necessarily executable action that can be executed
before the preempted transition.

We maintain NFAs that contain edges for all possibly
executable non—preempted event and temporal transi-

tions {(we refer to these collectively as “non-volitional

trangitiong”) nhr] fnr n" r‘nrrn‘nflv ::ec)n‘nnr] actions
vixisiviOils ACHI0ILS.

‘The refinement (or splitting) operation on an NFA
N with respect to a state S; and a feature Fj
r(N,S;, F;) = N’ is defined as follows:

S' = {SIf(S) = f(S:) U{(F},2)} for z € val(F})}
oN') = (v(N)=S)uS’

where S’ is the set of newly-added states. New tran-
sitions must be added into and out of the replacement
states:

rY 3
tion of a set of mtlal states and a COIlJllIlCthe goal
expression. The planner returns an NFA containing
only reachable states. Each state of the NFA will be
labeled with either an action or no-op, indicating to
CIRCA how fl]ﬁ P’T‘q chnn!r‘ react in that c“’nafin

Failure states will not be reachable in this NFA and
the system will move towards states satisfying the goal
expression whenever possible.

The planning problem may be very concise Iy de-
a erministic algorithm i

CTi a nondeter

o o

ed as K
ure 5. In this nrpqp‘nfahnn choose a_pd oneof are non-
determlnlstlc ch01ce operators An action is applicable
if the state necessarily satisfies its preconditions and if
the action preempts all transitions to failure from the
state Note that it is not sufficient to preempt tran-
inguished failure state. For
example, if there is a state s with an event transition
(i-e., a transition with a zero delay) to the failure state,
then any edges into s must also be considered as tran-
sitions to failure.

In practice, we implement this algori
gearch. with choice poi

SCarcii, vil CiOLICe

deterministic choice operators. The search falls when
it encounters a state for which there is no acceptable
action and for which there is no proposition on which

“U

T A T AT T

FLEXIBLE HIERARCHICAL PLAD

abstract-plan (isd);
isd s initial state description
let N' = @; The graph
openlist = ;
is = make-initial-state(isd);
N = N U {is};
push(is, openlist);
loop

we are done

break;
else

oneof
split-state :

assign-action :

fail

if there are no more reachable states in the openlist then

let s = choose a reachable state from openlist;
openlist := openlist — {s};

choose a proposition p and split s into |val(p)| states;
remove s from N and insert the new states;
add the new states to the open list;

choose an action (or no-op) that is applicable for s;

Figure 5: The DAP planning algorithm.

to split. We may not be able to split the state produc-
tively even if the state is only partially specified. No
further splitting will be productive if we can determine
that some bad transition must occur in the state, that
the state is reachable, and that there are no available
actions with which to preempt the bad transition.

The structure of the NFA being constructed guides
us in backtracking. When we fail to successfully han-
dle a state, we backjump to the earliest solved state
(we keep these on a closed list) that has an edge into
the failed state. Because the state is reachable, there
must be a state with an edge into it, unless the state is
the starting state. If we fail on the starting state, the
search as a whole has failed.

Note that we do not backtrack over state refine-
ments. Backtracking over these refinements is never
necessary: for every plan that can be found at a low
level of detail, there is a corresponding plan at every
higher level. Our experience suggests that the cost of
“coarsening” an NFA (and the additional bookkeeping
necessary to provide this option) is not worth the small
savings in graph size.

Through additional backtracking, we provide a sim-
ple anytime behavior. The AIS caches plans as they are
produced (recall that all plans are safety-preserving).
Through backtracking, the AIS can generate plans that
satisfy more of the goal propositions. Thus once a first
safety-producing plan is generated, the AIS may at will
invest more time into generating better plans.

684 PLANNING

There are two aspects to the heuristic control of the
search: the search should be directed to achieve safety
and to move the system towards states that satisfy
as many goal propositions as possible. To make the
search for goal propositions most efficient, the first ac-
tion the DAP planner takes is to split the initial state
according to the goal propositions. The heuristic we
use for directing the choice of actions and refinements
is a modified version of McDermott’s heuristic estima-
tor for state-based ADL planning (McDermott 1996).
When choosing how to handle a state, the planner con-
structs an operator-proposition graph connecting the
current state description to the goal state description.
This is a layered graph, with alternating layers contain-
ing nodes that represént propositions to be achieved
and operators that can establish those propositions.
Despite using full lookahead, this approach is heuristic
and efficient because it ignores details such as interac-
tions between operators.

Our version differs from McDermott’s because our
actions are simple STRIPS operators; his approach
covers schemas as well and must consider variable bind-
ing. Another difference is that McDermott’s is a more
traditional state-space planner, so state descriptions
are complete and the only way to establish a proposi-
tion is to apply an operator with the appropriate post-
conditions. Our state descriptions are partial, and one
way for the DAP planner to establish a proposition is to
refine a partial state description to include that propo-

Sg S} 7 So S11 F
1 FAILURE)] fSpLiT) N [Fer

TS prmrem e TTolin o n O
I.‘lgl,l "€ 0 UBSIIE

sition. Note that this operation is similar to the kind
of conditional planning done by CNLP (Peot & Smith
1992) and Plinth (Goldman & Boddy 1994): when the
planner cannot determine a prior: the value of a propo-
sition, 1t plans for both alternatives.

The nlanner combin

es information abont the context
2 1€ Pianner ComolInes INIoTINation adtoul viie CoOnLeXL

of a state with the heuristic information provided by
the operator-proposition graph. For example, when
choosing between several interesting propositions on
which to refine a state, the planner will prefer those

1 - n

are established by some transition leading into

=
o
o
o

As we mentloned earlier, the planner must concern
itself with safety as well as goal achievement. One place
where this difference becomes significant is when back-
tracking from a bad state (a state is bad if it has an

AAAAAAAAA PR I DRI VI R A FRp IR 1 U S R D
uuplcclupbauxc pdbll tO t0€ 1ailure bbdbc). A1L LIS LGDC,
the planner will work to avoid the failure. There are
two ways to do hlS either avoid actions that lead

to the bad state or refine the bad abstract state, to
demonstrate that the sub-states in which the bad tran-
sition(s) occur are not, in fact, reachable (for exam-

nle. gee Ficure R\ QQFofU concerns alan intrude when
Pig, s€¢ rigure NCErns ai mirude wiaen

none of the goal—dlrected actlons available at a state are
fast enough to preempt a transition that would lead to
failure. Safety is always the paramount consideration,
ca.usmg the planner '50 choose an action not preferred

‘<i
jaus
=
-
=
¢']
£
-
=5
17

Implementation Status & Preliminary
Results

The prototype DAP planner is implemented and run-
ning on a selection of example domains that were used

3 thia Amivinial OTDOOVA wncanwna 1. MLy MAD A tovimarn
i1l vl U1151 lal LUlivousny 1edCailil. AT AT pld;llllcl
reasons about safety preserving goals of avoidance and

optional goals of achievement in much the same way
as the original CIRCA planner, except that it does not
yet consider the detailed temporal model necessary to
ensure failure preemption in all cases. Manual inspec-
tion of the prototype’s cutput plans shows that they
are very similar to the original planner’s; the new plan-
ner chooses the same actions for the same states, but
does not yet correctly derive the timing requirements
on all of those actions.

1

ns, comparisons between the

I
Iv anpproximate. However. ini-
1y approximate. iowever, 1ni

e 11 ey Vit A
rlven these nmita
11

I
L
two planners are still o

two PraiilCls aic S

tial results are dramatic. Figure 7 shows several r
resentative cases, some with nearly an order of mag—
nitude reduction in search space using DAP. In the

Enumerated States Runtime (sec)
Domain | Original DAP Original DAP
Name Planner Planner | Planner Planner
Puma 1 826 89 222 1.13
Xdemo 2 28 9 0.43 0.08
Puma 3 76 i6 8.59 (.09
Puma 4 330 71 88.3 0.59
BT 6 7 7 0.08 0.04
Puma 9 212 41 58.8 0.33
Figure 7: The DAP planner dramatically reduces
the search space and time

&
O =

)
EZ
D

original CIRCA lanner cannot xploit. For example,
the DAP plan is able to describe all of the conditions in
which to take the push-emergency-button action as
a disjunction of just three abstract state descriptions,

whila tha aricinal OTROA nlannar an
wiili© il Origilial Linun pralilielr se

for 54 different fully-described states.

The BT 6 domain is a small, hand-crafted prob-
lem designed to force the orlglnal CIRCA planner to
backtrack through several decisions, thus exerc1smg the

g d : -

it makes the same backtracking moves as the original
planner, yielding the same search-space performance.

— A T

To date, this is the only domain in which the DAP tec

=
i

nique has not vielded anv performance improveme
ILIY UL oo uve Jl\/lubu (J».ll‘y lJ LilialiIve llllleVCl 1C11UL.
{(which has only 5 state features) still contain enough
hidden structure that the DAP technique is able to find
and exploit feasible abstractions.

=
o
'3
A
—
I~y
in
&,
A
o
P
=3
v
-
=
-}
05
0
<:
28
t'D
T‘
)
=
@
&
D
2
o
on
17
o
)
W
Q
ot
3
o]
=}

methods to increase the efﬁmencv of searchl g for plans
(see (Kambhampati 1994) for a brief survey). However,
these abstractions are typically used only as guides in
searching for a plan; the system may not know that
its goals will actually be achieved by an a
1u0 6\.’0\415 YV1i1i a\.wuculy T aliliovou U‘y all a
and it will not be able to execute the abstracted op
tors directly. Instead, traditional abstractlon planners
must eventually expand their current plans down to
the lowest level of detail, removing the abstraction to

plouu(,e a ll[ld.l execuudole pldl’l

In the DAP arnroach w

In the DAP approach, whi
only of state descriptions, abstract plans are exe-
cutable, because the operators are always completely
specified. This has two main advantages. First, the

FLEXIBLE HIERARCHICAL PLANNING 685

planning process can supply initial plans that preserve
safety but might, on further refinement, do a better job

of goal achievement. Second, the planning process can

terminate with an executable abstract plan, which our

results have shown may be much smaller than the cor-

responding plan expanded to precisely-defined states.
Dearden and Boutilier (1997) have developed an ab-

VN

stract planning algorithm for decision-theo
Tr0

'n1n(r mnr]o]pr‘ as a Mar](n‘_r APP’IQ](\Y‘I n

AAAAA & I B\ AR:AN. €0

Their method is similar to the DAP approach in that
it involves aggregating states, but there are some dif-
ferences. First, their method is not dynamiC' aggrega-
tion is pertormed usmg a predehned set of “relevant”

form the same positions are relevant everywhere
The underlying rnodel is also significantly different
from CIRCA’s: it does not model exogenous events
or the timing required for real-time guarantees.

Waboneoa of 21 aba Rarh
naoanza et ae. \anuqnza, Dparocau, & St-Denis 1997)

have developed a planning method for reactive agents
that is similar to the original CIRCA. Their architec-
ture dlﬂers 1n emphas1s however The NFAs it con-

that are the least common deno*rm“tor of all possible
transitions. This scheme will suffer a state space explo-
sion in domains where there is a wide range of possible

transition delays, like those to Whlch CIRCA has been
applied. Kabanza’s group has concentrated on develop-
ing a more flexible notation for goals than those used
'kv prhA]’\nf f]'nnv do not make i’]’\n same rhqfrnr'._

tlon between safety and goal achievement. In previ-
ous work, Godefroid and Kabanza (Godefroid & Ka-
banza 1991) developed an abstraction technique based
on partlal orders. Their resuits allow a system to ex-

dependent actions
aepenaent acuions,
Dle

'D

=]

1,'D

]

(V]

-

=

o

— e
=

to CIRCA, because their world model does not include
exogenous events. The more recent work by Kabanza

Vs 7d QL™

et al. (Kabanza, Barbeau, & Si-Denis

clude exogenous events, but they do not

r\r\ =\
gy } Ueb 1[1—
seem

to have

:—r o

carried over the earlier abstraction concepts.

Future Directions

this paper, we have presented Dynamic Abstraction
Planmng (L)AP), an abstraction technique that we use

o+ et
Q
ou
[¢)
=
[¢)
=
&
[
w @

D
=
-
=

ferent from
in performing abstraction locally and dynamlcally. In
our experience, by automatically selecting the appro-
priate level of abstraction at each step during the plan-

ning nrocess. DAP cignificantlv reduces the size of the

AAAA & pProcess, Uar SIgHINCallLly FCQUCCs LIC 51240 0L VIO

686 PLANNING

The main next step in developing the DAP method-
ology is to fully integrate the detailed temporal reason-
ing that the current prototype omits. Thls will bring

the new planner onto equal footing with the original
CIRCA planner, and will allow more accurate compar-
isons of the efficiency improvements gained by using

tha dunaorie shatnontion mathad
LiIT uyua.uuu Aostraciion mieunoa.

Acknowledgments This work was supported by the
Defense Advanced Research Projects Agency under
contract DAAK60-94-C-0040-P0006. We thank the re-
viewers for their helpful comments.

References

Dearden, R., and Boutilier, C. 1997. Abstraction
and approximate decision-theoretic planning. Artifi-
cial Intelligence 89(1-2):219-283.

Godefroid, P., and Kabanza, F. 1991. An efficient
reactive planner for synthesmlng reactive plans. In

AT 291 7Y

Proc. Nat’l Conf. on Artificial Intelligence, 640-645.

bean, M.; and St-Denis, R. 1997.

Planning control rules for reactive agents. Technical
Report 197, Comp. Sci. Dept., Univ. of Sherbrooke.

Kambhampati, S. 1994. Refinement search as a unify-
ing framework for analyzing planning algorithms. In
Proc. Fourth Int’l Conf. on Principles of Knowledge

ficial Intelligence Plannin
b

IEPTESETILA o Gn .u,cuoululzy

7 1.1 1 el A 1NN A Ao W s b
NODIOCK, L. A. 1J¥4. AuLOInlatiCally gClCratvlilg ab-

stractions for planning. Artificial Intelligence 68:243—

Der . A heuristic estimator for means-
ends analy51s in plannlng In Proc. Third Int’l Conf.
on Artificial Intelligence Planning Systems, 142-149.

Musliner, D. J.; Durfee, E. H.; and Shin, K. G. 1993.
CIRCA: a cooperative intelligent real-time control ar-
chitecture. IEEE Trans. Systems, Man, and Cyber-

netics 23(8):1581-1574

cCleLa HU\U)-J—U\JL LUl E.

Musliner, D. J.; Durfee, . I1.; and Shin, K. G. 1995
World modeling for the dynamic construction of real-
time control plans. Artzﬁcm ntelligence 74(1):83—
127.

Peot, M. A., and Smith, D. E. 1992. Conditional non-

linear planning. In Proec. First Int’l Conf. on Artificial

Inteiligence Planning Sysiems, 189-197.

Sacerdoti, E. D. 1974. Plannmg in a hierarchy of
abstraction spaces. Artificial 1melhgei ce 5(2):115-

35.

—

